39 research outputs found

    Transcriptomic response of yeast cells to ATX1 deletion under different copper levels.

    Get PDF
    BACKGROUND: Iron and copper homeostatic pathways are tightly linked since copper is required as a cofactor for high affinity iron transport. Atx1p plays an important role in the intracellular copper transport as a copper chaperone transferring copper from the transporters to Ccc2p for its subsequent insertion into Fet3p, which is required for high affinity iron transport. RESULTS: In this study, genome-wide transcriptional landscape of ATX1 deletants grown in media either lacking copper or having excess copper was investigated. ATX1 deletants were allowed to recover full respiratory capacity in the presence of excess copper in growth environment. The present study revealed that iron ion homeostasis was not significantly affected by the absence of ATX1 either at the transcriptional or metabolic levels, suggesting other possible roles for Atx1p in addition to its function as a chaperone in copper-dependent iron absorption. The analysis of the transcriptomic response of atx1∆/atx1∆ and its integration with the genetic interaction network highlighted for the first time, the possible role of ATX1 in cell cycle regulation, likewise its mammalian counterpart ATOX1, which was reported to play an important role in the copper-stimulated proliferation of non-small lung cancer cells. CONCLUSIONS: The present finding revealed the dispensability of Atx1p for the transfer of copper ions to Ccc2p and highlighted its possible role in the cell cycle regulation. The results also showed the potential of Saccharomyces cerevisiae as a model organism in studying the capacity of ATOX1 as a therapeutic target for lung cancer therapy.The authors greatly acknowledge the Turkish State Planning Organization DPT09K120520, Bogazici University Research Fund through Project No 5562 and TUBITAK through Project No 110 M692 for the financial support provided for this research.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s12864-016-2771-

    How yeast re-programmes its transcriptional profile in response to different nutrient impulses.

    Get PDF
    BACKGROUND: A microorganism is able to adapt to changes in its physicochemical or nutritional environment and this is crucial for its survival. The yeast, Saccharomyces cerevisiae, has developed mechanisms to respond to such environmental changes in a rapid and effective manner; such responses may demand a widespread re-programming of gene activity. The dynamics of the re-organization of the cellular activities of S. cerevisiae in response to the sudden and transient removal of either carbon or nitrogen limitation has been studied by following both the short- and long-term changes in yeast's transcriptomic profiles. RESULTS: The study, which spans timescales from seconds to hours, has revealed the hierarchy of metabolic and genetic regulatory switches that allow yeast to adapt to, and recover from, a pulse of a previously limiting nutrient. At the transcriptome level, a glucose impulse evoked significant changes in the expression of genes concerned with glycolysis, carboxylic acid metabolism, oxidative phosphorylation, and nucleic acid and sulphur metabolism. In ammonium-limited cultures, an ammonium impulse resulted in the significant changes in the expression of genes involved in nitrogen metabolism and ion transport. Although both perturbations evoked significant changes in the expression of genes involved in the machinery and process of protein synthesis, the transcriptomic response was delayed and less complex in the case of an ammonium impulse. Analysis of the regulatory events by two different system-level, network-based approaches provided further information about dynamic organization of yeast cells as a response to a nutritional change. CONCLUSIONS: The study provided important information on the temporal organization of transcriptomic organization and underlying regulatory events as a response to both carbon and nitrogen impulse. It has also revealed the importance of a long-term dynamic analysis of the response to the relaxation of a nutritional limitation to understand the molecular basis of the cells' dynamic behaviour.The authors greatly acknowledge the financial support for the research from the BBSRC (Grant BB/C505140/1 to SGO), and the travel grants for DD kindly provided by the Research Council of Turkey (TUBITAK) through the BDP programme and the Turkish State Planning Organization DPT09K120520. The research was also financially supported by Bogazici University Research Fund through Project No 631 and TUBITAK through Project No 106M444. Further support came from European Commission though the Coordination Action Project YSBN (Contract No.018942 to both BK and SGO) and UNICELLSYS Collaborative Project (No. 201142 to SGO)

    A Novel Strategy for Selection and Validation of Reference Genes in Dynamic Multidimensional Experimental Design in Yeast

    Get PDF
    <div><h3>Background</h3><p>Understanding the dynamic mechanism behind the transcriptional organization of genes in response to varying environmental conditions requires time-dependent data. The dynamic transcriptional response obtained by real-time RT-qPCR experiments could only be correctly interpreted if suitable reference genes are used in the analysis. The lack of available studies on the identification of candidate reference genes in dynamic gene expression studies necessitates the identification and the verification of a suitable gene set for the analysis of transient gene expression response.</p> <h3>Principal Findings</h3><p>In this study, a candidate reference gene set for RT-qPCR analysis of dynamic transcriptional changes in <em>Saccharomyces cerevisiae</em> was determined using 31 different publicly available time series transcriptome datasets. Ten of the twelve candidates (<em>TPI1</em>, <em>FBA1</em>, <em>CCW12</em>, <em>CDC19</em>, <em>ADH1</em>, <em>PGK1</em>, <em>GCN4</em>, <em>PDC1</em>, <em>RPS26A</em> and <em>ARF1</em>) we identified were not previously reported as potential reference genes. Our method also identified the commonly used reference genes <em>ACT1</em> and <em>TDH3</em>. The most stable reference genes from this pool were determined as <em>TPI1</em>, <em>FBA1</em>, <em>CDC19</em> and <em>ACT1</em> in response to a perturbation in the amount of available glucose and as <em>FBA1</em>, <em>TDH3</em>, <em>CCW12</em> and <em>ACT1</em> in response to a perturbation in the amount of available ammonium. The use of these newly proposed gene sets outperformed the use of common reference genes in the determination of dynamic transcriptional response of the target genes, <em>HAP4</em> and <em>MEP2</em>, in response to relaxation from glucose and ammonium limitations, respectively.</p> <h3>Conclusions</h3><p>A candidate reference gene set to be used in dynamic real-time RT-qPCR expression profiling in yeast was proposed for the first time in the present study. Suitable pools of stable reference genes to be used under different experimental conditions could be selected from this candidate set in order to successfully determine the expression profiles for the genes of interest.</p> </div

    CLUSTERnGO: a user-defined modelling platform for two-stage clustering of time-series data.

    Get PDF
    MOTIVATION: Simple bioinformatic tools are frequently used to analyse time-series datasets regardless of their ability to deal with transient phenomena, limiting the meaningful information that may be extracted from them. This situation requires the development and exploitation of tailor-made, easy-to-use and flexible tools designed specifically for the analysis of time-series datasets. RESULTS: We present a novel statistical application called CLUSTERnGO, which uses a model-based clustering algorithm that fulfils this need. This algorithm involves two components of operation. Component 1 constructs a Bayesian non-parametric model (Infinite Mixture of Piecewise Linear Sequences) and Component 2, which applies a novel clustering methodology (Two-Stage Clustering). The software can also assign biological meaning to the identified clusters using an appropriate ontology. It applies multiple hypothesis testing to report the significance of these enrichments. The algorithm has a four-phase pipeline. The application can be executed using either command-line tools or a user-friendly Graphical User Interface. The latter has been developed to address the needs of both specialist and non-specialist users. We use three diverse test cases to demonstrate the flexibility of the proposed strategy. In all cases, CLUSTERnGO not only outperformed existing algorithms in assigning unique GO term enrichments to the identified clusters, but also revealed novel insights regarding the biological systems examined, which were not uncovered in the original publications. AVAILABILITY AND IMPLEMENTATION: The C++ and QT source codes, the GUI applications for Windows, OS X and Linux operating systems and user manual are freely available for download under the GNU GPL v3 license at http://www.cmpe.boun.edu.tr/content/CnG. CONTACT: [email protected] SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.This work was supported by the Turkish State Planning Organization [DPT09K120520 to B.K.]; the Bogazici University Research Fund [10A05D4 to B.K., 08A506 to B.K., 6882-12A01D5 to A.T.C.]; TUBITAK [106M444 to B.K., 110E292 to A.T.C.], Biotechnology and Biological Sciences Research Council [BRIC2.2 grant BB/K011138/1 to S.G.O.]; and EU 7th Framework Programme [BIOLEDGE Contract No: 289126 to S.G.O.].This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/bioinformatics/btv53

    Complex Disease Interventions from a Network Model for Type 2 Diabetes

    No full text
    <div><p>There is accumulating evidence that the proteins encoded by the genes associated with a common disorder interact with each other, participate in similar pathways and share GO terms. It has been anticipated that the functional modules in a disease related functional linkage network are informative to reveal significant metabolic processes and disease’s associations with other complex disorders. In the current study, Type 2 diabetes associated functional linkage network (T2DFN) containing 2770 proteins and 15041 linkages was constructed. The functional modules in this network were scored and evaluated in terms of shared pathways, co-localization, co-expression and associations with similar diseases. The assembly of top scoring overlapping members in the functional modules revealed that, along with the well known biological pathways, circadian rhythm, diverse actions of nuclear receptors in steroid and retinoic acid metabolisms have significant occurrence in the pathophysiology of the disease. The disease’s association with other metabolic and neuromuscular disorders was established through shared proteins. Nuclear receptor NRIP1 has a pivotal role in lipid and carbohydrate metabolism, indicating the need to investigate subsequent effects of NRIP1 on Type 2 diabetes. Our study also revealed that CREB binding protein (CREBBP) and cardiotrophin-1 (CTF1) have suggestive roles in linking Type 2 diabetes and neuromuscular diseases.</p></div

    A section of disease network showing disease associations derived through T2DFN.

    No full text
    <p>A section of disease network showing disease associations derived through T2DFN.</p

    Condensed functional linkage network constructed from the top scoring functional modules in T2DFN.

    No full text
    <p>In this representation, white color represents the proteins that are not associated with a GO Term in the final configuration.</p
    corecore