860 research outputs found

    Spatial confinement of muonium atoms

    Full text link
    We report the achievement of spatial confinement of muonium atoms (the bound state of a positive muon and an electron). Muonium emitted into vacuum from mesoporous silica reflects between two SiO2_2 confining surfaces separated by 1 mm. From the data, one can extract that the reflection probability on the confining surfaces kept at 100 K is about 90% and the reflection process is well described by a cosine law. This technique enables new experiments with this exotic atomic system and is a very important step towards a measurement of the 1S-2S transition frequency using continuous wave laser spectroscopy.Comment: 5 pages, 6 figure

    Compact 20-pass thin-disk amplifier insensitive to thermal lensing

    Full text link
    We present a multi-pass amplifier which passively compensates for distortions of the spherical phase front occurring in the active medium. The design is based on the Fourier transform propagation which makes the output beam parameters insensitive to variation of thermal lens effects in the active medium. The realized system allows for 20 reflections on the active medium and delivers a small signal gain of 30 with M2^2 = 1.16. Its novel geometry combining Fourier transform propagations with 4f-imaging stages as well as a compact array of adjustable mirrors allows for a layout with a footprint of 400 mm x 1000 mm.Comment: 7 pages, 6 figure

    Evolution Equation for Generalized Parton Distributions

    Full text link
    The extension of the method [arXiv:hep-ph/0503109] for solving the leading order evolution equation for Generalized Parton Distributions (GPDs) is presented. We obtain the solution of the evolution equation both for the flavor nonsinglet quark GPD and singlet quark and gluon GPDs. The properties of the solution and, in particular, the asymptotic form of GPDs in the small x and \xi region are discussed.Comment: REVTeX4, 34 pages, 3 figure

    Factorization of the transfer matrices for the quantum sl(2) spin chains and Baxter equation

    Full text link
    It is shown that the transfer matrices of homogeneous sl(2) invariant spin chains with generic spin, both closed and open, are factorized into the product of two operators. The latter satisfy the Baxter equation that follows from the structure of the reducible representations of the sl(2) algebra.Comment: 14 pages, 9 figures, typos correcte

    The role of primary and secondary air on wood combustion in cookstoves

    Get PDF
    Published online: 30 Mar 2016.A two-stage solid fuel research furnace was used to examine the claim that through forced draught greater mixing and more complete combustion could be achieved. By varying the primary air (PA) and secondary air (SA) flow the influence on the combustion process was investigated. In the first part of the combustion, when the release of volatile compounds predominates, the variation of neither PA nor SA had a significant influence. In the second part when mainly char is oxidised an increase in both PA and SA lead to a rising nominal combustion efficiency (NCE = CO₂/(CO₂ + CO)), with a greater impact observed with SA. Furthermore higher air flows caused the heat transfer, to a pot above the furnace, to decline. Therefore forced draught does lead to greater mixing and mitigation of emissions, but in the presented configuration a trade-off between a higher NCE and a lower heat transfer needs consideration.Thomas Kirch, Cristian H. Birzer, Paul R. Medwell and Liam Holde

    Baxter operators for the quantum sl(3) invariant spin chain

    Full text link
    The noncompact homogeneous sl(3) invariant spin chains are considered. We show that the transfer matrix with generic auxiliary space is factorized into the product of three sl(3) invariant commuting operators. These operators satisfy the finite difference equations in the spectral parameters which follow from the structure of the reducible sl(3) modules.Comment: 20 pages, 4 figures, references adde

    Historical Reconstruction Reveals Recovery in Hawaiian Coral Reefs

    Get PDF
    Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (∼AD 1400–1820) and an ongoing recovery in the NWHI (∼AD 1950–2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>103 km2). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts

    Solid deuterium surface degradation at ultracold neutron sources

    Full text link
    Solid deuterium (sD_2) is used as an efficient converter to produce ultracold neutrons (UCN). It is known that the sD_2 must be sufficiently cold, of high purity and mostly in its ortho-state in order to guarantee long lifetimes of UCN in the solid from which they are extracted into vacuum. Also the UCN transparency of the bulk sD_2 material must be high because crystal inhomogeneities limit the mean free path for elastic scattering and reduce the extraction efficiency. Observations at the UCN sources at Paul Scherrer Institute and at Los Alamos National Laboratory consistently show a decrease of the UCN yield with time of operation after initial preparation or later treatment (`conditioning') of the sD_2. We show that, in addition to the quality of the bulk sD_2, the quality of its surface is essential. Our observations and simulations support the view that the surface is deteriorating due to a build-up of D_2 frost-layers under pulsed operation which leads to strong albedo reflections of UCN and subsequent loss. We report results of UCN yield measurements, temperature and pressure behavior of deuterium during source operation and conditioning, and UCN transport simulations. This, together with optical observations of sD_2 frost formation on initially transparent sD_2 in offline studies with pulsed heat input at the North Carolina State University UCN source results in a consistent description of the UCN yield decrease.Comment: 15 pages, 22 figures, accepted by EPJ-
    corecore