130 research outputs found

    Measurement of the ttˉproductioncrosssectionint\bar{t} production cross section in p\bar{p}collisionsat collisions at \sqrt{s}$ = 1.8 TeV

    Full text link
    We update the measurement of the top production cross section using the CDF detector at the Fermilab Tevatron. This measurement uses ttˉt\bar{t} decays to the final states e+νe+\nu+jets and μ+ν\mu+\nu+jets. We search for bb quarks from tt decays via secondary-vertex identification or the identification of semileptonic decays of the bb and cascade cc quarks. The background to the ttˉt\bar{t} production is determined primarily through a Monte Carlo simulation. However, we calibrate the simulation and evaluate its uncertainty using several independent data samples. For a top mass of 175 GeV/c2GeV/c^2, we measure σttˉ=5.1±1.5\sigma_{t\bar{t}}=5.1 \pm 1.5 pb and σttˉ=9.2±4.3\sigma_{t\bar{t}}=9.2 \pm 4.3 pb using the secondary vertex and the lepton tagging algorithms, respectively. Finally, we combine these results with those from other ttˉt\bar{t} decay channels and obtain σttˉ=6.51.4+1.7\sigma_{t\bar{t}} = 6.5^{+1.7}_{-1.4} pb.Comment: The manuscript consists of 130 pages, 35 figures and 42 tables in RevTex. The manuscript is submitted to Physical Review D. Fixed typo in author lis

    Measurement of Rapidity Distribution for High Mass Drell-Yan ee Pairs at CDF

    Full text link
    We report on the first measurement of the rapidity distribution dsigma/dy over nearly the entire kinematic region of rapidity for e^+e^- pairs in the Z-boson region of 66116 GeV/c^2. The data sample consists of 108 pb^{-1} of ppbar collisions at \sqrt{s}=1.8 TeV taken by the Collider Detector at Fermilab during 1992--1995. The total cross section in the ZZ-boson region is measured to be 252 +- 11 pb. The measured total cross section and d\sigma/dy are compared with quantum chromodynamics calculations in leading and higher orders.Comment: 7 pages, 3 figures. Submitted to Physical Review Letter

    Measurement of J/Psi and Psi(2S) Polarization in ppbar Collisions at sqrt(s) = 1.8 TeV

    Get PDF
    We have measured the polarization of J/Psi and Psi(2S) mesons produced in p\bar{p} collisions at \sqrt{s} = 1.8 TeV, using data collected at CDF during 1992-95. The polarization of promptly produced J/Psi [Psi(2S)] mesons is isolated from those produced in B-hadron decay, and measured over the kinematic range 4[5.5] < P_T < 20 GeV/c and |y| < 0.6. For P_T \gessim 12 GeV/c we do not observe significant polarization in the prompt component.Comment: Revised version, accepted for publication in Physical Review Letter

    Measurement of the Decay Amplitudes of B0 --> J/psi K* and B0s --> J/psi phi Decays

    Full text link
    A full angular analysis has been performed for the pseudo-scalar to vector-vector decays, B0 --> J/psi K* and B_s --> J/psi phi, to determine the amplitudes for decays with parity-even longitudinal and transverse polarization and parity-odd transverse polarization. The measurements are based on 190 B0 candidates and 40 B_s candidates collected from a data set corresponding to 89 inverse pb of pbarp collisions at root(s) = 1.8 TeV at the Fermilab Tevatron. In both decays the decay amplitude for longitudinal polarization dominates and the parity-odd amplitude is found to be small.Comment: 7 pages, 3 figures, 1 tabl

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved

    Neutrinos

    Get PDF
    229 pages229 pages229 pagesThe Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms

    Cross Section and Heavy Quark Composition of Photon+Muon Events Produced in ppbar Collisions

    Full text link
    We present a measurement of the cross section and the first measurement of the heavy flavor content of associated direct photon + muon events produced in hadronic collisions. These measurements come from a sample of 1.8 TeV ppbar collisions recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily due to Compton scattering process charm+gluon -> charm+photon, with the final state charm quark producing a muon. The cross section for events with a photon transverse momentum between 12 and 40 GeV/c is measured to be 46.8+-6.3+-7.5 pb, which is two standard deviations below the most recent theoretical prediction. A significant fraction of the events in the sample contain a final-state bottom quark. The ratio of charm to bottom production is measured to be 2.4+-1.2, in good agreement with QCD models.Comment: 15 pages, 5 figure

    Search for Neutral Supersymmetric Higgs Bosons in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV

    Full text link
    We present the results of a search for neutral Higgs bosons produced in association with bb quarks in ppˉbbˉϕbbˉbbˉp\bar{p}\to b\bar{b} \phi\to b\bar{b}b\bar{b} final states with 91±791 \pm 7 pb1^{-1} of ppˉp\bar{p} collisions at s=1.8\sqrt{s}=1.8 TeV recorded by the Collider Detector at Fermilab. We find no evidence of such a signal and the data is interpreted in the context of the neutral Higgs sector of the Minimal Supersymmetric extension of the Standard Model. With basic parameter choices for the supersymmetric scale and the stop quark mixing, we derive 95% C.L. lower mass limits for neutral Higgs bosons for \tb values in excess of 35.Comment: 2 tex files 3 figure

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figuresMajor update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figuresThe preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess
    corecore