688 research outputs found

    Evolution of the Stellar Mass--Metallicity Relation - I: Galaxies in the z~0.4 Cluster Cl0024

    Get PDF
    We present the stellar mass-stellar metallicity relationship (MZR) in the Cl0024+1654 galaxy cluster at z~0.4 using full spectrum stellar population synthesis modeling of individual quiescent galaxies. The lower limit of our stellar mass range is M∗=109.7M⊙M_*=10^{9.7}M_\odot, the lowest galaxy mass at which individual stellar metallicity has been measured beyond the local universe. We report a detection of an evolution of the stellar MZR with observed redshift at 0.037±0.0070.037\pm0.007 dex per Gyr, consistent with the predictions from hydrodynamical simulations. Additionally, we find that the evolution of the stellar MZR with observed redshift can be explained by an evolution of the stellar MZR with their formation time, i.e., when the single stellar population (SSP)-equivalent ages of galaxies are taken into account. This behavior is consistent with stars forming out of gas that also has an MZR with a normalization that decreases with redshift. Lastly, we find that over the observed mass range, the MZR can be described by a linear function with a shallow slope, ([Fe/H]∝(0.16±0.03)log⁥M∗[Fe/H] \propto (0.16 \pm 0.03) \log M_*). The slope suggests that galaxy feedback, in terms of mass-loading factor, might be mass-independent over the observed mass and redshift range.Comment: 22 pages, 10 figures. Accepted for publication in Ap

    Thinking outside the curve, part II: modeling fetal-infant mortality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Greater epidemiologic understanding of the relationships among fetal-infant mortality and its prognostic factors, including birthweight, could have vast public health implications. A key step toward that understanding is a realistic and tractable framework for analyzing birthweight distributions and fetal-infant mortality. The present paper is the second of a two-part series that introduces such a framework.</p> <p>Methods</p> <p>We propose estimating birthweight-specific mortality within each component of a normal mixture model representing a birthweight distribution, the number of components having been determined from the data rather than fixed <it>a priori</it>.</p> <p>Results</p> <p>We address a number of methodological issues related to our proposal, including the construction of confidence intervals for mortality risk at any given birthweight within a component, for odds ratios comparing mortality within two different components from the same population, and for odds ratios comparing mortality within analogous components from two different populations. As an illustration we find that, for a population of white singleton infants, the odds of mortality at 3000 g are an estimated 4.15 times as large in component 2 of a 4-component normal mixture model as in component 4 (95% confidence interval, 2.04 to 8.43). We also outline an extension of our framework through which covariates could be probabilistically related to mixture components. This extension might allow the assertion of approximate correspondences between mixture components and identifiable subpopulations.</p> <p>Conclusions</p> <p>The framework developed in this paper does not require infants from compromised pregnancies to share a common birthweight-specific mortality curve, much less assume the existence of an interval of birthweights over which all infants have the same curve. Hence, the present framework can reveal heterogeneity in mortality that is undetectable via a contaminated normal model or a 2-component normal mixture model.</p

    Evolution of the Stellar Mass–Metallicity Relation. II. Constraints on Galactic Outflows from the Mg Abundances of Quiescent Galaxies

    Get PDF
    We present the stellar mass–[Fe/H] and mass–[Mg/H] relation of quiescent galaxies in two galaxy clusters at z ~ 0.39 and z ~ 0.54. We derive the age, [Fe/H], and [Mg/Fe] for each individual galaxy using a full-spectrum fitting technique. By comparing with the relations for z ~ 0 Sloan Digital Sky Survey galaxies, we confirm our previous finding that the mass–[Fe/H] relation evolves with redshift. The mass–[Fe/H] relation at higher redshift has lower normalization and possibly steeper slope. However, based on our sample, the mass–[Mg/H] relation does not evolve over the observed redshift range. We use a simple analytic chemical evolution model to constrain the average outflow that these galaxies experience over their lifetime, via the calculation of mass-loading factor. We find that the average mass-loading factor η is a power-law function of galaxy stellar mass, η ∝ M*^(−0.21±0.09). The measured mass-loading factors are consistent with the results of other observational methods for outflow measurements and with the predictions where outflow is caused by star formation feedback in turbulent disks

    Coronary Artery Disease and Nonalcoholic Fatty Liver Disease: Clinical Correlation Using CT Coronary Calcium Scans

    Get PDF
    Introduction: Nonalcoholic fatty liver disease (NAFLD) and coronary artery disease (CAD) have been explored with coronary angiography which showed a link between severe NAFLD and CVD risk. This study’s aim is to determine if CT coronary artery calcium (CAC) scores used to determine CAD severity in asymptomatic populations can help predict presence of NAFLD. Methods: Retrospective cross-sectional study of positive CT CAC scores and liver imaging with either CT, ultrasound, or MRI of the abdomen or CT of the chest. Drinking 7 or 14 drinks per week for a woman or man respectively and chronic viral hepatitis diagnosis were excluding criteria. CT CAC scores and hepatic steatosis were correlated by chi-squared analysis. Age, sex, lipid and liver panels, weight, blood pressure, and hemoglobin A1c were correlated to CAD severity and NAFLD by logistic regression. Results: 134 patients with a median age of 63 years (IQR 57-69), 65% male, BMI 28.5 (IQR 23.9-31.3), and 8% diabetes. CAD severity was not associated with presence of hepatic steatosis (p = 0.36). Multivariate logistic regression showed a link between hepatic steatosis, CAD severity, BMI over 30 (p = 0.02), and diabetes (p = 0.01). There were associations between hepatic steatosis with triglycerides (p = 0.03) and CAD severity with AST (p = 0.02). Discussion: In patients with CAD detected using a positive CAC CT scan, we determined that BMI over 30 and diabetes were markers of increased NAFLD risk. We determined there was no direct relationship between CAD and hepatic steatosis presence

    Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    Get PDF
    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ∌375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ΔSr SW = +13.8 to +41.6, where ΔSr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters

    Stellar Kinematics in the Complicated Inner Spheroid of M31: Discovery of Substructure Along the Southeastern Minor Axis and its Relationship to the Giant Southern Stream

    Get PDF
    We present the discovery of a kinematically-cold stellar population along the SE minor axis of the Andromeda galaxy (M31) that is likely the forward continuation of M31's giant southern stream. This discovery was made in the course of an on-going spectroscopic survey of red giant branch (RGB) stars in M31 using the DEIMOS instrument on the Keck II 10-m telescope. Stellar kinematics are investigated in eight fields located 9-30 kpc from M31's center (in projection). A likelihood method based on photometric and spectroscopic diagnostics is used to isolate confirmed M31 RGB stars from foreground Milky Way dwarf stars: for the first time, this is done without using radial velocity as a selection criterion, allowing an unbiased study of M31's stellar kinematics. The radial velocity distribution of the 1013 M31 RGB stars shows evidence for the presence of two components. The broad (hot) component has a velocity dispersion of 129 km/s and presumably represents M31's virialized spheroid. A significant fraction (19%) of the population is in a narrow (cold) component centered near M31's systemic velocity with a velocity dispersion that decreases with increasing radial distance, from 55.5 km/s at R_proj=12 kpc to 10.6 km/s at R_proj=18 kpc. The spatial and velocity distribution of the cold component matches that of the "Southeast shelf" predicted by the Fardal et al. (2007) orbital model of the progenitor of the giant southern stream. The metallicity distribution of the cold component matches that of the giant southern stream, but is about 0.2 dex more metal rich on average than that of the hot spheroidal component. We discuss the implications of our discovery on the interpretation of the intermediate-age spheroid population found in this region in recent ultra-deep HST imaging studies.Comment: 23 pages, 16 figures, 2 tables, accepted for publication in the Astrophysical Journal. Changes from previous version: expanded discussion in sections 4.2 and 7.2, removal of section 7.1.4 and associated figure (discussion moved to section 7.1.2

    Construction of an adult barnacle (Balanus amphitrite) cDNA library and selection of reference genes for quantitative RT-PCR studies

    Get PDF
    De Gregoris TB, Borra M, Biffali E, et al. Construction of an adult barnacle (Balanus amphitrite) cDNA library and selection of reference genes for quantitative RT-PCR studies. BMC Molecular Biology. 2009;10(1):62.BACKGROUND: Balanus amphitrite is a barnacle commonly used in biofouling research. Although many aspects of its biology have been elucidated, the lack of genetic information is impeding a molecular understanding of its life cycle. As part of a wider multidisciplinary approach to reveal the biogenic cues influencing barnacle settlement and metamorphosis, we have sequenced and annotated the first cDNA library for B. amphitrite. We also present a systematic validation of potential reference genes for normalization of quantitative real-time PCR (qRT-PCR) data obtained from different developmental stages of this animal. RESULTS: We generated a cDNA library containing expressed sequence tags (ESTs) from adult B. amphitrite. A total of 609 unique sequences (comprising 79 assembled clusters and 530 singlets) were derived from 905 reliable unidirectionally sequenced ESTs. Bioinformatics tools such as BLAST, HMMer and InterPro were employed to allow functional annotation of the ESTs. Based on these analyses, we selected 11 genes to study their ability to normalize qRT-PCR data. Total RNA extracted from 7 developmental stages was reverse transcribed and the expression stability of the selected genes was compared using geNorm, BestKeeper and NormFinder. These software programs produced highly comparable results, with the most stable gene being mt-cyb, while tuba, tubb and cp1 were clearly unsuitable for data normalization. CONCLUSION: The collection of B. amphitrite ESTs and their annotation has been made publically available representing an important resource for both basic and applied research on this species. We developed a qRT-PCR assay to determine the most reliable reference genes. Transcripts encoding cytochrome b and NADH dehydrogenase subunit 1 were expressed most stably, although other genes also performed well and could prove useful to normalize gene expression studies

    Evolution of the Stellar Mass–Metallicity Relation. I. Galaxies in the z ∌ 0.4 Cluster Cl0024

    Get PDF
    We present the stellar mass–stellar metallicity relationship (MZR) in the galaxy cluster Cl0024+1654 at z ~ 0.4 using full-spectrum stellar population synthesis modeling of individual quiescent galaxies. The lower limit of our stellar mass range is M* = 10^(9.7) M ⊙, the lowest galaxy mass at which individual stellar metallicity has been measured beyond the local universe. We report a detection of an evolution of the stellar MZR with observed redshift at 0.037 ± 0.007 dex per Gyr, consistent with the predictions from hydrodynamical simulations. Additionally, we find that the evolution of the stellar MZR with observed redshift can be explained by an evolution of the stellar MZR with the formation time of galaxies, i.e., when the single stellar population (SSP)-equivalent ages of galaxies are taken into account. This behavior is consistent with stars forming out of gas that also has an MZR with a normalization that decreases with redshift. Lastly, we find that over the observed mass range, the MZR can be described by a linear function with a shallow slope ([Fe/H] ∝ (0.16 ± 0.03) log M*. The slope suggests that galaxy feedback, in terms of mass-loading factor, might be mass-independent over the observed mass and redshift range
    • 

    corecore