131 research outputs found

    Invasive aspergillosis following HSCT: Outcomes and prognostic factors associated with mortality

    Get PDF

    Site specific needs affect process choices for H2S abatement in geothermal power plants

    Get PDF
    The abatement of hydrogen sulfide in geothermal power plants has under gone considerable change in recent years. More stringent regulatory requirements for H2S abatement have increased costs. This paper will review the history of abatement technology, discuss the effect of operating conditions on the requirements for abatement processes, review process choices for both primary and secondary abatement, and provide two case examples of the economics of the Dow Chemical Company's GAS/SPEC RT-2 technology and the SulFerox* Technology (1,2,3)

    Experimental Evaluation of the Mechanical Properties of Steel Reinforcement at Elevated Temperature

    Get PDF
    This paper describes an experimental investigation into the influence of elevated temperatures on the mechanical properties of steel reinforcement. The study includes tests carried out at ambient temperature as well as under steady-state and transient elevated temperature conditions. A complementary test series, in which the residual post-cooling properties of reinforcing bars were examined, is also described. The experimental study focussed on assessing the performance of reinforcement of 6 and 8 mm diameter, although 10 mm bars were also considered in some cases. The specimens included both plain and deformed bars. After providing an outline of the experimental set-up and loading procedures, a detailed account of the test results is presented and discussed. Apart from the evaluation of stress–strain response and degradation of stiffness and strength properties, particular emphasis is given to assessing the influence of temperature on enhancing the ductility of reinforcement. The findings of this study have direct implications on procedures used for predicting the ultimate behaviour of structural floor elements and assemblages during, and following, exposure to elevated temperatures

    Mid-Miocene to Present Upper-Plate Deformation of the Southern Cascadia Forearc: Effects of the Superposition of Subduction and Transform Tectonics

    Get PDF
    The southern Cascadia forearc undergoes a three-stage tectonic evolution, each stage involving different combinations of tectonic drivers, that produce differences in the upper-plate deformation style. These drivers include subduction, the northward migration of the Mendocino triple junction and associated thickening and thinning related to the Mendocino Crustal Conveyor (MCC) effect, and the NNW translation of the Sierra Nevada-Great Valley (SNGV) block. We combine geodetic data, plate reconstructions, seismic tomography and topographic observations to determine how the southern Cascadia upper plate is deforming in response to the combined effects of subduction and NNW-directed (MCC- and SNGV-related) tectonic processes. The location of the terrane boundaries between the relatively weak Franciscan complex and the stronger Klamath Mountain province (KMP) and SNGV block has been a key control on the style of upper-plate deformation in the southern Cascadia forearc since the mid-Miocene. At ∌15 Ma, present-day southern Cascadia was in central Cascadia and deformation there was principally controlled by subduction processes. Since ∌5 Ma, this region of the Cascadia upper plate, where the KMP lies inboard of the Franciscan complex, has been deforming in response to both subduction and MCC- and SNGV-related effects. GPS data show that the KMP is currently moving to the NNW at ∌8–12 mm/yr with little internal deformation, largely in response to the northward push of the SNGV block at its southern boundary. In contrast, the Franciscan complex is accommodating high NNW-directed and NE-directed shortening strain produced by MCC-related shortening and subduction coupling respectively. This composite tectonic regime can explain the style of faulting within and west of the KMP. Associated with this Mendocino Crustal Conveyor crustal thickening, seismic tomography imagery shows a region of low velocity material that we interpret to represent crustal flow and injection of Franciscan crust into the KMP at intracrustal levels. We suggest that this MCC-related crustal flow and injection of material into the KMP is a relatively young feature (post ∌5 Ma) and is driving a rejuvenated period of rock uplift within the KMP. This scenario provides a potential explanation for steep channels and high relief, suggestive of rapid erosion rates within the interior of the KMP

    Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage orogenesis

    Get PDF
    The Tibetan Plateau is a prime example of a collisional orogen with widespread strike-slip faults whose age and tectonic significance remain controversial. We present new low-temperature thermochronometry to date periods of exhumation associated with Kunlun and Haiyuan faulting, two major strike-slip faults within the northeastern margin of Tibet. Apatite and zircon (U-Th)/He and apatite fission-track ages, which record exhumation from ∌2 to 6 km crustal depths, provide minimum bounds on fault timing. Results from Kunlun samples show increased exhumation rates along the western fault segment at circa 12-8 Ma with a possible earlier phase of motion from ∌30-20 Ma, along the central fault segment at circa 20-15 Ma, and along the eastern fault segment at circa 8-5 Ma. Combined with previous studies, our results suggest that motion along the Haiyuan fault may have occurred as early as ∌15 Ma along the western/central fault segment before initiating at least by 10-8 Ma along the eastern fault tip. We relate an ∌250 km wide zone of transpressional shear to synchronous Kunlun and Haiyuan fault motion and suggest that the present-day configuration of active faults along the northeastern margin of Tibet was likely established since middle Miocene time. We interpret the onset of transpression to relate to the progressive confinement of Tibet against rigid crustal blocks to the north and expansion of crustal thickening to the east during the later stages of orogen development. Key Points Low-T thermochronometry dates periods of exhumation along NE Tibet faults Left-lateral faulting by mid-to-late Miocene along the Kunlun and Haiyuan Faults Shift to widespread lateral faulting in late stage of Tibet collisional histor

    Restriction fragment mass polymorphism (RFMP) analysis based on MALDI-TOF mass spectrometry for detecting antiretroviral resistance in HIV-1 infected patients

    Get PDF
    AbstractViral genotype assessment is important for effective clinical management of HIV-1 infected patients, especially when access and/or adherence to antiretroviral treatment is reduced. In this study, we describe development of a matrix-assisted laser desorption/ionization-time of flight mass spectrometry-based viral genotyping assay, termed restriction fragment mass polymorphism (RFMP). This assay is suitable for sensitive, specific and high-throughput detection of multiple drug-resistant HIV-1 variants. One hundred serum samples from 60 HIV-1-infected patients previously exposed to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs) and protease inhibitors (PIs) were analysed for the presence of drug-resistant viruses using the RFMP and direct sequencing assays. Probit analysis predicted a detection limit of 223.02 copies/mL for the RFMP assay and 1268.11 copies/mL for the direct sequencing assays using HIV-1 RNA Positive Quality Control Series. The concordance rates between the RFMP and direct sequencing assays for the examined codons were 97% (K65R), 97% (T69Ins/D), 97% (L74VI), 97% (K103N), 96% (V106AM), 97% (Q151M), 97% (Y181C), 97% (M184VI) and 94% (T215YF) in the reverse transcriptase coding region, and 100% (D30N), 100% (M46I), 100% (G48V), 100% (I50V), 100% (I54LS), 99% (V82A), 99% (I84V) and 100% (L90M) in the protease coding region. Defined mixtures were consistently and accurately identified by RFMP at 5% relative concentration of mutant to wild-type virus while at 20% or greater by direct sequencing. The RFMP assay based on mass spectrometry proved to be sensitive, accurate and reliable for monitoring the emergence and early detection of HIV-1 genotypic variants that lead to drug resistance

    Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-th)/He thermochronology

    Get PDF
    High topography in central Asia is perhaps the most fundamental expression of the Cenozoic Indo-Asian collision, yet an understanding of the timing and rates of development of the Tibetan Plateau remains elusive. Here we investigate the Cenozoic thermal histories of rocks along the eastern margin of the plateau adjacent to the Sichuan Basin in an effort to determine when the steep topographic escarpment that characterizes this margin developed. Temperature-time paths inferred from 40Ar/39Ar thermochronology of biotite, multiple diffusion domain modeling of alkali feldspar40Ar release spectra, and (U-Th)/He thermochronology of zircon and apatite imply that rocks at the present-day topographic front of the plateau underwent slow cooling (<1°C/m.y.) from Jurassic times until the late Miocene or early Pliocene. The regional extent and consistency of thermal histories during this time period suggest the presence of a stable thermal structure and imply that regional denudation rates were low (<0.1 mm/yr for nominal continental geotherms). Beginning in the late Miocene or early Pliocene, these samples experienced a pronounced cooling event (>30°-50°C/m.y.) coincident with exhumation from inferred depths of ~8-10 km, at denudation rates of 1-2 mm/yr. Samples from the interior of the plateau continued to cool relatively slowly during the same time period (~3°C/m.y.), suggesting limited exhumation (1-2 km). However, these samples record a slight increase in cooling rate (from <1 to ~3°C/m.y.) at some time during the middle Tertiary; the tectonic significance of this change remains uncertain. Regardless, late Cenozoic denudation in this region appears to have been markedly heterogeneous, with the highest rates of exhumation focused at the topographic front of the plateau margin. We infer that the onset of rapid cooling at the plateau margin reflects the erosional response to the development of regionally significant topographic gradients between the plateau and the stable Sichuan Basin and thus marks the onset of deformation related to the development of the Tibetan Plateau in this region. The present margin of the plateau adjacent to and north of the Sichuan Basin is apparently no older than the late Miocene or early Pliocene (~5-12 Ma)

    Prevalence of intellectual disability among eight-year-old children from selected communities in the United States, 2014

    Get PDF
    Background: Children with intellectual disability (ID), characterized by impairments in intellectual functioning and adaptive behavior, benefit from early identification and access to services. Previous U.S. estimates used administrative data or parent report with limited information for demographic subgroups. Objective: Using empiric measures we examined ID characteristics among 8-year-old children and estimated prevalence by sex, race/ethnicity, geographic area and socioeconomic status (SES) area indicators. Methods: We analyzed data for 8-year-old children in 9 geographic areas participating in the 2014 Autism and Developmental Disabilities Monitoring Network. Children with ID were identified through record review of IQ test data. Census and American Community Survey data were used to estimate the denominator. Results: Overall, 11.8 per 1,000 (1.2%) had ID (IQ ≀ 70), of whom 39% (n = 998) also had autism spectrum disorder. Among children with ID, 1,823 had adaptive behavior test scores for which 64% were characterized as impaired. ID prevalence per 1,000 was 15.8 (95% confidence interval [95% CI], 15.0–16.5) among males and 7.7 (95% CI, 7.2–8.2) among females. ID prevalence was 17.7 (95% CI, 16.6–18.9) among children who were non-Hispanic black; 12.0 (95% CI, 11.1–13.0), among Hispanic; 8.6 (95% CI, 7.1–10.4), among non-Hispanic Asian; and 8.0 (95% CI, 7.5–8.6), among non-Hispanic white. Prevalence varied across geographic areas and was inversely associated with SES. Conclusions: ID prevalence varied substantively among racial, ethnic, geographic, and SES groups. Results can inform strategies to enhance identification and improve access to services particularly for children who are minorities or living in areas with lower SES
    • 

    corecore