63 research outputs found

    Some Novel Methods of Ordered Dither

    Get PDF
    Various authors have contributed their original works in the field of digital halftoning during past two to three decades. Still this field has not lost its glory. The goal of the study was to investigate novel methods in digital halftoning specially, in ordered dithering. This paper is concerned with two novel methods of ordered dither. In the first method dithering is done first by pre-embedding a pattern image generated from a matrix pattern with the original image. In the second method dithering is done by thresholding the original image with respect to a threshold matrix pattern constructed using a character writing pattern. The two methods may be applied in digital halftone reproduction and as special effect imaging

    Combination therapy with ampicillin and azithromycin in an experimental pneumococcal pneumonia is bactericidal and effective in down regulating inflammation in mice

    Get PDF
    OBJECTIVES: Emergence of multidrug resistance among Streptococcus pneumoniae (SP), has limited the available options used to treat infections caused by this organism. The objective of this study was to compare the role of monotherapy and combination therapy with ampicillin (AMP) and azithromycin (AZM) in eradicating bacterial burden and down regulating lung inflammation in a murine experimental pneumococcal infection model. METHODS: Balb/C mice were infected with 10(6) CFU of SP. Treatments with intravenous ampicillin (200 mg/kg) and azithromycin (50 mg/kg) either alone or in combination was initiated 18 h post infection, animals were sacrificed from 0 – 6 h after initiation of treatment. AMP and AZM were quantified in serum by microbiological assay. Levels of TNF-α, IFN-γ IL-6, and IL-10 in serum and in lungs, along with myeloperoxidase, inflammatory cell count in broncho alveolar lavage fluid, COX-2 and histopathological changes in lungs were estimated. RESULTS: Combination therapy down regulated lung inflammation and accelerated bacterial clearance. This approach also significantly decreased TNF-α, IFN-γ, IL-6 and increased IL-10 level in serum and lungs along with decreased myeloperoxidase, pulmonary vascular permeability, inflammatory cell numbers and COX-2 levels in lungs. CONCLUSIONS: Combinatorial therapy resulted in comparable bactericidal activity against the multi-drug resistant isolate and may represent an alternative dosing strategy, which may help to alleviate problems with pneumococcal pneumonia

    Vertically Aligned Few-Layered Graphene-Based Non-Cryogenic Bolometer

    Get PDF
    In this study, we report the photoresponse of vertically aligned few-layered graphene (VAG) upon infra-red (IR) irradiation at room temperature. Four probe measurements showed the current−voltage (I−V) characteristic of electrical switching during pulsed IR irradiation. The photoresponse reported here for VAG was significantly higher than that reported for carbon nanotube (CNT) samples. Our investigation shows that such a photoresponse arose solely from the bolometric effect, where the conductivity changed with temperature. The resistance magnitude of the VAGs increased ~two fold for each 6 °C increase in temperature. Also, the Thermal Coefficient of Resistance (TCR) in this region was ~11%/K, which is the highest TCR value reported for any carbon nanomaterial

    One-pot synthesis of multifunctional ZnO nanomaterials: study of superhydrophobicity and UV photosensing property

    Get PDF
    ZnO nanomaterials are synthesized using one-pot synthesis method. Equimolar solution of Zinc Nitrate hexahydrate (Zn(NO3)(2).6H(2)O) and Hexamethylenetetramine (C6H12N4) is used as a precursor for ZnO formation. Different nanostructures of ZnO are achieved by controlling the pH of the growth solution in the range 2-12 (acidic to alkali). ZnO nanostructures are evaluated for hydrophobic property using static contact angle measurement setup and UV photosensing activity. Surface morphology, structural properties and compositional analysis of ZnO nanostructures are examined by field emission scanning electron microscope (FE-SEM), energy dispersive X-ray analysis (EDX), high-resolution transmission electron microscope (FEG-TEM) and X-ray diffraction (XRD) measurements. Existence of ZnO wurtzite structure is confirmed from XRD study and is analyzed by Rietveld refinement method. Nanomaterials are characterized using Raman spectroscopy which confirms highest oxygen deficiency in ZnO nanorods. The material shows remarkable superhydrophobic and UV photosensing property and hence the name multifunctional. Among all morphologies grown at different pH values, ZnO nanorods show superhydrophobic nature with contact angle more than 170 degrees. Total surface energy value of ZnO nanostructures is calculated using Wendt two-component theory. Different ZnO nanostructures (with variation of pH value) are used to study UV photosensing property. Responsivity and photocurrent show a strong dependence on the morphology of ZnO

    Solar Activity Phases and Intermediate-degree Mode Frequencies

    Full text link
    We analyze intermediate degree p-mode eigenfrequencies measured by GONG and MDI/SOHO over a solar cycle to study the source of their variability. We carry out a correlation analysis between the change in frequencies and several measures of the Sun's magnetic activity that are sensitive to changes at different levels in the solar atmosphere. The observations span a period of about 12 years starting from mid-1996 (the minimum of cycle 23) to early-2008 (near minimum of cycle 24), corresponding to a nearly complete solar activity cycle. We demonstrate that the frequencies do vary in phase with the solar activity indices, however the degree of correlation differs from phase to phase of the cycle. During the rising and declining phases, the mode frequency shifts are strongly correlated with the activity proxies whereas during the high-activity period, the shifts have significantly lower correlation with all activity proxies, except for the 10.7-cm radio flux. In particular, the proxies that are only influenced by the variation of the strong component of the magnetic field in the photosphere have a much lower correlation at the high-activity period. On the other hand, the shifts are better correlated with the proxies sensitive to changes in the weak component of the magnetic field. Our correlation analysis suggests that more than 90% of the variation in the oscillation frequencies in all activity phases can be explained by changes in both components of the magnetic field. Further, the slopes obtained from the linear regression analysis also differ from phase to phase and show a strong correlation with the correlation coefficients between frequency shifts and solar activity.Comment: Accepted for publication in Astrophysical Journal (April 20, 2009 issue

    Tumor Tissue Explant Culture of Patient-Derived Xenograft as Potential Prioritization Tool for Targeted Therapy

    Get PDF
    Despite of remarkable progress made in the head and neck cancer (HNC) therapy, the survival rate of this metastatic disease remain low. Tailoring the appropriate therapy to patients is a major challenge and highlights the unmet need to have a good preclinical model that will predict clinical response. Hence, we developed an accurate and time efficient drug screening method of tumor ex vivo analysis (TEVA) system, which can predict patient-specific drug responses. In this study, we generated six patient derived xenografts (PDXs) which were utilized for TEVA. Briefly, PDXs were cut into 2 × 2 × 2 mm3 explants and treated with clinically relevant drugs for 24 h. Tumor cell proliferation and death were evaluated by immunohistochemistry and TEVA score was calculated. Ex vivo and in vivo drug efficacy studies were performed on four PDXs and three drugs side-by-side to explore correlation between TEVA and PDX treatment in vivo. Efficacy of drug combinations was also ventured. Optimization of the culture timings dictated 24 h to be the time frame to detect drug responses and drug penetrates 2 × 2 × 2 mm3 explants as signaling pathways were significantly altered. Tumor responses to drugs in TEVA, significantly corresponds with the drug efficacy in mice. Overall, this low cost, robust, relatively simple and efficient 3D tissue-based method, employing material from one PDX, can bypass the necessity of drug validation in immune-incompetent PDX-bearing mice. Our data provides a potential rationale for utilizing TEVA to predict tumor response to targeted and chemo therapies when multiple targets are proposed

    Prospective, multicentre study of screening, investigation and management of hyponatraemia after subarachnoid haemorrhage in the UK and Ireland

    Get PDF
    Background: Hyponatraemia often occurs after subarachnoid haemorrhage (SAH). However, its clinical significance and optimal management are uncertain. We audited the screening, investigation and management of hyponatraemia after SAH. Methods: We prospectively identified consecutive patients with spontaneous SAH admitted to neurosurgical units in the United Kingdom or Ireland. We reviewed medical records daily from admission to discharge, 21 days or death and extracted all measurements of serum sodium to identify hyponatraemia (<135 mmol/L). Main outcomes were death/dependency at discharge or 21 days and admission duration >10 days. Associations of hyponatraemia with outcome were assessed using logistic regression with adjustment for predictors of outcome after SAH and admission duration. We assessed hyponatraemia-free survival using multivariable Cox regression. Results: 175/407 (43%) patients admitted to 24 neurosurgical units developed hyponatraemia. 5976 serum sodium measurements were made. Serum osmolality, urine osmolality and urine sodium were measured in 30/166 (18%) hyponatraemic patients with complete data. The most frequently target daily fluid intake was >3 L and this did not differ during hyponatraemic or non-hyponatraemic episodes. 26% (n/N=42/164) patients with hyponatraemia received sodium supplementation. 133 (35%) patients were dead or dependent within the study period and 240 (68%) patients had hospital admission for over 10 days. In the multivariable analyses, hyponatraemia was associated with less dependency (adjusted OR (aOR)=0.35 (95% CI 0.17 to 0.69)) but longer admissions (aOR=3.2 (1.8 to 5.7)). World Federation of Neurosurgical Societies grade I–III, modified Fisher 2–4 and posterior circulation aneurysms were associated with greater hazards of hyponatraemia. Conclusions: In this comprehensive multicentre prospective-adjusted analysis of patients with SAH, hyponatraemia was investigated inconsistently and, for most patients, was not associated with changes in management or clinical outcome. This work establishes a basis for the development of evidence-based SAH-specific guidance for targeted screening, investigation and management of high-risk patients to minimise the impact of hyponatraemia on admission duration and to improve consistency of patient care

    Activation of p53 function by human transcriptional coactivator PC4:role of protein-protein interaction, DNA bending, and posttranslational modifications

    No full text
    Tumor suppressor p53 controls cell cycle checkpoints and apoptosis via the transactivation of several genes that are involved in these processes. The functions of p53 are regulated by a wide variety of proteins, which interact with it either directly or indirectly. The multifunctional human transcriptional coactivator PC4 interacts with p53 in vivo and in vitro and regulates its function. Here we report the molecular mechanisms of the PC4-mediated activation of p53 function. PC4 interacts with the DNA binding and C-terminal domains of p53 through its DNA binding domain, which is essential for the stimulation of p53 DNA binding. Remarkably, ligation-mediated circularization assays reveal that PC4 induces significant bending in the DNA double helix. Deletion mutants defective in DNA bending are found to be impaired in activating p53-mediated DNA binding and apoptosis. Furthermore, acetylation of PC4 enhances, while phosphorylation abolishes, its ability to bend DNA, activate p53 DNA binding, and, thereby, regulate p53 functions. In conclusion, PC4 activates p53 recruitment to p53-responsive promoters (Bax and p21) in vivo through its interaction with p53 and by providing bent substrate for p53 recruitment. These results elucidate the general molecular mechanisms of activation of p53 function, mediated by its coactivators
    corecore