32 research outputs found

    Hydrogen storage and the 18-electron rule

    Get PDF
    We show that the 18-electron rule can be used to design new organometallic systems that can store hydrogen with large gravimetric density. In particular, Ti containing organic molecules such as C4H4, C5H5, and C8H8 can store up to 9wt% hydrogen, which meets the Department of Energy target for the year 2015. More importantly, hydrogen in these materials is stored in molecular form with an average binding energy of about 0.55eV∕H2 molecule, which is ideal for fast kinetics. Using molecular orbitals we have analyzed the maximum number of H2 molecules that can be adsorbed as well as the nature of their bonding and orientation. The charge transfer from the H2 bonding orbital to the empty dxy and dx2−y2 orbitals of Ti has been found to be singularly responsible for the observed binding of the hydrogen molecule. It is argued that early transition metals are better suited for optimal adsorption/desorption of hydrogen

    Hydrogen storage and the 18-electron rule

    Get PDF

    Gold as hydrogen: Structural and electronic properties and chemical bonding in Si3Au3+/0/- and comparisons to Si3H3+/0/-

    Get PDF
    A single Au atom has been shown to behave like H in its bonding to Si in several mono- and disilicon gold clusters. In the current work, we investigate the Au∕H analogy in trisilicon gold clusters, Si3Au+∕0∕−3. Photoelectron spectroscopy and density functional calculations are combined to examine the geometric and electronic structure of Si3Au−3. We find that there are three isomers competing for the ground state of Si3Au−3 as is the case for Si3H−3. Extensive structural searches show that the potential energy surfaces of the trisilicon gold clusters (Si3Au−3, Si3Au3, and Si3Au+3) are similar to those of the corresponding silicon hydrides. The lowest energy isomers for Si3Au−3 and Si3Au3 are structurally similar to a Si3Au four-membered ring serving as a common structural motif. For Si3Au+3, the 2π aromatic cyclotrisilenylium auride ion, analogous to the aromatic cyclotrisilenylium ion (Si3H+3), is the most stable species. Comparison of the structures and chemical bonding between Si3Au+∕0∕−3 and the corresponding silicon hydrides further extends the isolobal analogy between Au and H

    Ground state structures and photoelectron spectroscopy of [Com(coronene)]− complexes

    Get PDF
    A synergistic approach involving theory and experiment has been used to study the structure and properties of neutral and negatively charged cobalt-coronene [Com(coronene)] complexes. The calculations are based on density functional theory with generalized gradient approximation for exchange and correlation potential, while the experiments are carried out using photoelectron spectroscopy of mass selected anions. The authors show that the geometries of neutral and anionic Co(coronene) and Co2(coronene) are different from those of the corresponding iron-coronene complexes and that both the Co atom and the dimer prefer to occupy η2-bridge binding sites. However, the magnetic coupling between the Co atoms remains ferromagnetic as it is between iron atoms supported on a coronene molecule. The accuracy of the theoretical results is established by comparing the calculated vertical detachment energies, and adiabatic electron affinities with their experimental data

    Electronic structure and properties of isoelectronic magic clusters: Al13X (X=H,Au,Li,Na,K,Rb,Cs)

    Get PDF
    The equilibrium structure, stability, and electronic properties of the Al13X (X=H,Au,Li,Na,K,Rb,Cs) clusters have been studied using a combination of photoelectron spectroscopy experiment and density functional theory. All these clusters constitute 40 electron systems with 39 electrons contributed by the 13 Al atoms and 1 electron contributed by each of the X (X=H,Au,Li,Na,K,Rb,Cs) atom. A systematic study allows us to investigate whether all electrons contributed by the X atoms are alike and whether the structure, stability, and properties of all the magic clusters are similar. Furthermore, quantitative agreement between the calculated and the measured electron affinities and vertical detachment energies enable us to identify the ground state geometries of these clusters both in neutral and anionic configurations

    Communications: Chain and double-ring polymeric structures: Observation of AlnH3n+1 − (n=4–8) and Al4H14 −

    Get PDF
    A pulsed arc discharge source was used to prepare gas-phase, aluminum hydride cluster anions, AlnHm−, exhibiting enhanced hydrogen content. The maximum number of hydrogen atoms in AlnHm− species was m=3n+1 for n=5–8, i.e., AlnH3n+1−, and m=3n+2 for n=4, i.e., Al4H14−, as observed in their mass spectra. These are the most hydrogen-rich aluminum hydrides to be observed thus far, transcending the 3:1 hydrogen-to-aluminum ratio in alane. Even more striking, ion intensities for AlnHm− species with m=3n+1 and m=3n+2 hydrogen atoms were significantly higher than those of nearby AlnHm− mass peaks for which m\u3c3n+1, i.e., the ion intensities for AlnH3n+1− and for Al4H14− deviated from the roughly bell-shaped ion intensity patterns seen for most AlnHm−species, in which m ranges from 1 to 3n. Calculations based on density functional theory showed that AlnH3n+1− clusters have chain and/or double-ring polymericstructures

    The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters

    Get PDF
    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of Mg m Al n − (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg 3 Al 11 and Mg 2 Al 12 −, did the aluminum moieties exhibit Zintl anion-like characteristics
    corecore