59 research outputs found

    Transfer of Neuroplasticity from Nucleus Accumbens Core to Shell Is Required for Cocaine Reward

    Get PDF
    It is well established that cocaine induces an increase of dendritic spines density in some brain regions. However, few studies have addressed the role of this neuroplastic changes in cocaine rewarding effects and have often led to contradictory results. So, we hypothesized that using a rigorous time- and subject-matched protocol would demonstrate the role of this spine increase in cocaine reward. We designed our experiments such as the same animals (rats) were used for spine analysis and behavioral studies. Cocaine rewarding effects were assessed with the conditioned place preference paradigm. Spines densities were measured in the two subdivisions of the nucleus accumbens (NAcc), core and shell. We showed a correlation between the increase of spine density in NAcc core and shell and cocaine rewarding effects. Interestingly, when cocaine was administered in home cages, spine density was increase in NAcc core only. With anisomycin, a protein synthesis inhibitor, injected in the core we blocked spine increase in core and shell and also cocaine rewarding effects. Strikingly, whereas injection of this inhibitor in the shell immediately after conditioning had no effect on neuroplasticity or behavior, its injection 4 hours after conditioning was able to block neuroplasticity in shell only and cocaine-induced place preference. Thus, it clearly appears that the neuronal plasticity in the NAcc core is essential to induce plasticity in the shell, necessary for cocaine reward. Altogether, our data revealed a new mechanism in the NAcc functioning where a neuroplasticity transfer occurred from core to shell

    Moderate exercise and chronic stress produce counteractive effects on different areas of the brain by acting through various neurotransmitter receptor subtypes: A hypothesis

    Get PDF
    BACKGROUND: Regular, "moderate", physical exercise is an established non-pharmacological form of treatment for depressive disorders. Brain lateralization has a significant role in the progress of depression. External stimuli such as various stressors or exercise influence the higher functions of the brain (cognition and affect). These effects often do not follow a linear course. Therefore, nonlinear dynamics seem best suited for modeling many of the phenomena, and putative global pathways in the brain, attributable to such external influences. HYPOTHESIS: The general hypothesis presented here considers only the nonlinear aspects of the effects produced by "moderate" exercise and "chronic" stressors, but does not preclude the possibility of linear responses. In reality, both linear and nonlinear mechanisms may be involved in the final outcomes. The well-known neurotransmitters serotonin (5-HT), dopamine (D) and norepinephrine (NE) all have various receptor subtypes. The article hypothesizes that 'Stress' increases the activity/concentration of some particular subtypes of receptors (designated nt(s)) for each of the known (and unknown) neurotransmitters in the right anterior (RA) and left posterior (LP) regions (cortical and subcortical) of the brain, and has the converse effects on a different set of receptor subtypes (designated nt(h)). In contrast, 'Exercise' increases nt(h )activity/concentration and/or reduces nt(s )activity/concentration in the LA and RP areas of the brain. These effects may be initiated by the activation of Brain Derived Neurotrophic Factor (BDNF) (among others) in exercise and its suppression in stress. CONCLUSION: On the basis of this hypothesis, a better understanding of brain neurodynamics might be achieved by considering the oscillations caused by single neurotransmitters acting on their different receptor subtypes, and the temporal pattern of recruitment of these subtypes. Further, appropriately designed and planned experiments will not only corroborate such theoretical models, but also shed more light on the underlying brain dynamics

    MLJ: A Julia package for composable machine learning

    No full text
    MLJ (Machine Learing in Julia) is an open source software package providing a common interface for interacting with machine learning models written in Julia and other languages. It provides tools and meta-algorithms for selecting, tuning, evaluating, composing and comparing those models, with a focus on flexible model composition. In this design overview we detail chief novelties of the framework, together with the clear benefits of Julia over the dominant multi-language alternatives.MLJ (Machine Learing in Julia) is an open source software package providing a common interface for interacting with machine learning models written in Julia and other languages. It provides tools and meta-algorithms for selecting, tuning, evaluating, composing and comparing those models, with a focus on flexible model composition. In this design overview we detail chief novelties of the framework, together with the clear benefits of Julia over the dominant multi-language alternatives.0.14.

    Altered peripheral immune profiles in treatment-resistant depression: response to ketamine and prediction of treatment outcome

    Get PDF
    A subset of patients with depression have elevated levels of inflammatory cytokines, and some studies demonstrate interaction between inflammatory factors and treatment outcome. However, most studies focus on only a narrow subset of factors in a patient sample. In the current study, we analyzed broad immune profiles in blood from patients with treatment-resistant depression (TRD) at baseline and following treatment with the glutamate modulator ketamine. Serum was analyzed from 26 healthy control and 33 actively depressed TRD patients free of antidepressant medication, and matched for age, sex and body mass index. All subjects provided baseline blood samples, and TRD subjects had additional blood draw at 4 and 24 h following intravenous infusion of ketamine (0.5 mg kg-1). Samples underwent multiplex analysis of 41 cytokines, chemokines and growth factors using quantitative immunoassay technology. Our a priori hypothesis was that TRD patients would show elevations in canonical pro-inflammatory cytokines; analyses demonstrated significant elevation of the pro-inflammatory cytokine interleukin-6. Further exploratory analyses revealed significant regulation of four additional soluble factors in patients with TRD. Several cytokines showed transient changes in level after ketamine, but none correlated with treatment response. Low pretreatment levels of fibroblast growth factor 2 were associated with ketamine treatment response. In sum, we found that patients with TRD demonstrate a unique pattern of increased inflammatory mediators, chemokines and colony-stimulating factors, providing support for the immune hypothesis of TRD. These patterns suggest novel treatment targets for the subset of patients with TRD who evidence dysregulated immune functioning
    • …
    corecore