297 research outputs found

    Access to Max '91 information via computer networks

    Get PDF
    Various types of flare information, activity, active region reports, x ray plots and daily Campaign Action notices are now available on SPAN, and INTERNET. Although this system was developed for use by Max '91 participants during campaigns, it is updated daily and maintained at times outside of campaigns. Thus it is available for general use outside of campaigns. The Space Environment Laboratory maintains VAX and Apollo systems, both of which are on INTERNET. The VAX is also on the SPAN network as node SELVAX or 9555. Details of access to files on the VAX are given

    Quasi-periodic pulsations in solar hard X-ray and microwave flares

    Get PDF
    For more than a decade, various studies have pointed out that hard X-ray and microwave time profiles of some solar flares show quasi-periodic fluctuations or pulsations. Nevertheless, it was not until recently that a flare displaying large amplitude quasi-periodic pulsations in X-rays and microwaves was observed with good spectral coverage and with a sufficient time resolution. The event occurred on June 7, 1980, at approximately 0312 UT, and exhibits seven intense pulses with a quasi-periodicity of approximately 8 seconds in microwaves, hard X-rays, and gamma-ray lines. On May 12, 1983, at approximately 0253 UT, another good example of this type of flare was observed both in hard X-rays and in microwaves. Temporal and spectral characteristics of this flare are compared with the event of June 7, 1980. In order to further explore these observational results and theoretical scenarios, a study of nine additional quasi-periodic events were incorporated with the results from the two flares described. Analysis of these events are briefly summarized

    Hard X-ray Spectroscopic, Microwave and H-alpha Linear Polarization Studies with Hard X-Ray Observations from HESSI

    Get PDF
    The Principal Investigator (P.I.) has been pursuing a three year grant under NASA's Sun-Earth Connection Guest Investigator Program in support of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). An objective of these efforts is to combine X-ray and other data on solar flares, coronal mass ejections and interplanetary particle events in order to obtain a more comprehensive recognition of signatures, and understanding of interplanetary proton events. Thus, part of these efforts are to investigate if signatures seen in hard X-rays and microwaves can lead to better predictions of interplanetary proton events that can be dangerous to astronauts and spacecraft. The original proposal was written in May, 2000 and it discusses a three-pronged approach for data comparisons with three new types of instrumentation observing at X-ray, microwave and optical wavelengths. The major impetus behind this work and the proposal is that the P.I. discovered a strong correlation between a particular type of hard X-ray signature seen in spectral evolutions and interplanetary proton events (Kiplinger, 1995). The basic signature is that hard X-ray flux peaks either exhibit spectra that soften on their decays (Le. show fewer and fewer high energy X-rays with time) or they harden during decays (i.e. high energy X-rays decay significantly slower that lower energy X-rays). This signature is called progressive hardening. Studies were conducted over an eight-year period of data from the Hard X-Ray Burst Spectrometer (HXRBS) of the Solar maximum mission. Out of the 750 well observed flares studied, 41 flares had major associated proton events. Of these, 29 events were predicted on the basis of progressive hardening for a hit rate of 71%. The 152 largest flares had a hit rate of 82%

    Studies of Solar Flare and Interplanetary Particle Acceleration and Coordination of Ground-Based Solar Observations in Support of US and International Space Missions

    Get PDF
    A primary focus has been to conduct studies of particular types of hard X-ray evolution in solar flares and their associations with high energy interplanetary protons observed near Earth. Previously, two large investigations were conducted that revealed strong associations between episodes of progressive spectral hardening seen in solar events and interplanetary proton events (Kiplinger, 1995). An algorithm was developed for predicting interplanetary protons that is more accurate than those currently in use when hard X-ray spectra are available. The basic research on a third study of the remaining independent subset of Hard X-ray Burst Spectrometer (HXRBS) events randomly not selected by the original studies was completed. This third study involves independent analyses of the data by two analysts. The results echo the success of the earlier studies. Of 405 flares analyzed, 12 events were predicted to have associated interplanetary protons at the Space Environment Service Center (SESC) level. Of these, five events appear to be directly associated with SESC proton events, six other events had lower level associated proton events, and there was only one false alarm with no protons. Another study by Garcia and Kiplinger (1995) established that progressively hardening hard X-ray flares associated with interplanetary proton events are intrinsically cooler and not extremely intense in soft X-rays unless a "contaminating" large impulsive flare accompanies the hardening flare

    A high-speed digital camera system for the observation of rapid H-alpha fluctuations in solar flares

    Get PDF
    Researchers developed a prototype digital camera system for obtaining H-alpha images of solar flares with 0.1 s time resolution. They intend to operate this system in conjunction with SMM's Hard X Ray Burst Spectrometer, with x ray instruments which will be available on the Gamma Ray Observatory and eventually with the Gamma Ray Imaging Device (GRID), and with the High Resolution Gamma-Ray and Hard X Ray Spectrometer (HIREGS) which are being developed for the Max '91 program. The digital camera has recently proven to be successful as a one camera system operating in the blue wing of H-alpha during the first Max '91 campaign. Construction and procurement of a second and possibly a third camera for simultaneous observations at other wavelengths are underway as are analyses of the campaign data

    The largest white light flare ever observed: 25 April 1984, 0001 UT

    Get PDF
    The X13/3B flare of 25 April 1984, 0001 UT, was accompanied by intense white light emission that reached a peak power output approx 2x10 to the 29 erg/sec in the optical/near UV continuum; the total energy radiated in the continuum alone reached 10 to the 32 power ergs. This was the most powerful white light flare yet recorded, exceeding the peak output of the largest previously known event by more than one order of magnitude. The flare was a two-ribbon type with intense embedded kernels as observed in both Balmer-alpha line and Balmer continuum, and each of these flare ribbons covered separate umbrae shortly after the maximum of the event. The onset and peak of the white light emission coincided with the onset and peak of the associated E greater than 100 KeV hard X-ray burst, while the 1-8 angstrom soft X-ray emission reached its maximum 4 minutes after the peak in white light

    Temporal and spectral characteristics of solar flare hard X-ray emission

    Get PDF
    Solar Maximum Mission observations of three flares that impose stringent constraints on physical models of the hard X-ray production during the impulsive phase are presented. Hard X-ray imaging observations of the flares on 1980 November 5 at 22:33 UT show two patches in the 16 to 30 keV images that are separated by 70,000 km and that brighten simultaneously to within 5 s. Observations to O V from one of the footprints show simultaneity of the brightening in this transition zone line and in the total hard X-ray flux to within a second or two. These results suggest but do not require the existence of electron beams in this flare. The rapid fluctuations of the hard X-ray flux within some flares on the time scales of 1 s also provide evidence for electron beams and limits on the time scale of the energy release mechanism. Observations of a flare on 1980 June 6 at 22:34 UT show variations in the 28 keV X-ray counting rate from one 20 ms interval to the next over a period of 10 s. The hard X-ray spectral variations measured with 128 ms time resolution for one 0.5 s spike during this flare are consistent with the predictions of thick-target non-thermal beam model

    Development of a high-speed H-alpha camera system for the observation of rapid fluctuations in solar flares

    Get PDF
    A solid-state digital camera was developed for obtaining H alpha images of solar flares with 0.1 s time resolution. Beginning in the summer of 1988, this system will be operated in conjunction with SMM's hard X-ray burst spectrometer (HXRBS). Important electron time-of-flight effects that are crucial for determining the flare energy release processes should be detectable with these combined H alpha and hard X-ray observations. Charge-injection device (CID) cameras provide 128 x 128 pixel images simultaneously in the H alpha blue wing, line center, and red wing, or other wavelength of interest. The data recording system employs a microprocessor-controlled, electronic interface between each camera and a digital processor board that encodes the data into a serial bitstream for continuous recording by a standard video cassette recorder. Only a small fraction of the data will be permanently archived through utilization of a direct memory access interface onto a VAX-750 computer. In addition to correlations with hard X-ray data, observations from the high speed H alpha camera will also be correlated and optical and microwave data and data from future MAX 1991 campaigns. Whether the recorded optical flashes are simultaneous with X-ray peaks to within 0.1 s, are delayed by tenths of seconds or are even undetectable, the results will have implications on the validity of both thermal and nonthermal models of hard X-ray production

    The hard X-ray burst spectrometer event listing, 1980 - 1985

    Get PDF
    This event listing is a comprehensive reference for the hard X-ray bursts detected with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission from the time of launch on February 14, 1980 to September 1985. Over 8000 X-ray events were detected in the energy range from 30 to approx. 500 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event
    corecore