58 research outputs found

    Quantification of Loss of Access to Critical Services during Floods in Greater Jakarta: Integrating Social, Geospatial, and Network Perspectives

    Get PDF
    This work presents a framework for assessing the socio-physical disruption of critical infrastructure accessibility using the example of Greater Jakarta, a metropolitan area of the Indonesian city. The first pillar of the framework is damage quantification based on the real flood event in 2020. Within this pillar, the system network statistics before and shortly after the flood were compared. The results showed that the flood impeded access to facilities, distorted transport connectivity, and increased system vulnerability. Poverty was found to be negatively associated with surface elevation, suggesting that urbanization of flood-prone areas has occurred. The second pillar was a flood simulation. Our simulations identified the locations and clusters that are more vulnerable to the loss of access during floods, and the entire framework can be applied to other cities and urban areas globally and adapted to account for different disasters that physically affect urban infrastructure. This work demonstrated the feasibility of damage quantification and vulnerability assessment relying solely on open and publicly available data and tools. The framework, which uses satellite data on the occurrence of floods made available by space agencies in a timely manner, will allow for rapid ex post investigation of the socio-physical consequences of disasters. It will save resources, as the analysis can be performed by a single person, as opposed to expensive and time-consuming ground surveys. Ex ante vulnerability assessment based on simulations will help communities, urban planners, and emergency personnel better prepare for future shocks

    Modeling Wildfire Dynamics in Latin America Using the FLAM Framework

    Get PDF
    The increasing frequency of wildfires caused by climate change poses a significant threat globally, particularly in Latin America – a region known for its critical ecosystems. Its vulnerability to climate change-induced wildfire threats, resulting from increasing temperatures and changing precipitation patterns, is uncertain, highlighting the need for comprehensive strategies such as incorporating advanced modeling and proactive measures to understand, manage, and conserve its ecological state in the face of threats posed by climate change, such as wildfires. This study utilizes the wildFire cLimate impacts and Adaptation Model (FLAM) by IIASA to provide a comprehensive analysis of past and projected wildfire dynamics in Latin America. FLAM is a process-based fire parameterization algorithm used to assess the impacts of climate, fuel availability, topography, and anthropogenic factors on wildfire characteristics. It is highly adjustable and adaptable, making it suitable to analyze past and future wildfire trends in diverse regions such as Latin America. We analyzed spatial and temporal wildfire patterns using MODIS satellite data alongside historical climate and anthropogenic data to calibrate FLAM. We generated projections of burned areas until 2100 under 3 RCP scenarios for Latin American as a whole, as well as for distinct sub-regions to better assess regional wildfire dynamics and climate change impacts. Moreover, we developed a scenario to explore the impacts of increased fire suppression efficiency on projected burned area and highlight the impacts of focusing mitigation and management efforts on areas identified as hotspots (high risk of wildfire). The study shows FLAM’s effectiveness in modeling historical wildfires and its sensitivity to the RCP scenarios in predicting wildfire trends in Latin America. Our analysis and results show how FLAM helps in evaluating the potential future changes in wildfire intensity, and geographic spread under various climatic scenarios. FLAM projected a dramatic rise in burned area until the end of the century across Latin America in line with observed trends, especially under severe climate change scenarios. Regions with the highest temperature rises are also prone to reduced precipitation, which further increase wildfire risks. The spatially-explicit projections highlight areas at higher risk of wildfire, enabling targeted and efficient fire management and mitigation strategies. Our study further showed the potential impact of adaptive measures, such as enhanced fire suppression efficiency in identified hotspots, in reducing annual mean burned area. Overall, this study provides critical insights into the relationship between climate change and wildfire dynamics using a state of the art model. It sets the foundation for further research on fires in Latin America and efficient management strategies which can be modelled by FLAM

    Anticipating Future Risks of Climate-Driven Wildfires in Boreal Forests

    Get PDF
    Extreme forest fires have historically been a significant concern in Canada, the Russian Federation, the USA, and now pose an increasing threat in boreal Europe. This paper deals with application of the wildFire cLimate impacts and Adaptation Model (FLAM) in boreal forests. FLAM operates on a daily time step and utilizes mechanistic algorithms to quantify the impact of climate, human activities, and fuel availability on wildfire probabilities, frequencies, and burned areas. In our paper, we calibrate the model using historical remote sensing data and explore future projections of burned areas under different climate change scenarios. The study consists of the following steps: (i) analysis of the historical burned areas over 2001–2020; (ii) analysis of temperature and precipitation changes in the future projections as compared to the historical period; (iii) analysis of the future burned areas projected by FLAM and driven by climate change scenarios until the year 2100; (iv) simulation of adaptation options under the worst-case scenario. The modeling results show an increase in burned areas under all Representative Concentration Pathway (RCP) scenarios. Maintaining current temperatures (RCP 2.6) will still result in an increase in burned area (total and forest), but in the worst-case scenario (RCP 8.5), projected burned forest area will more than triple by 2100. Based on FLAM calibration, we identify hotspots for wildland fires in the boreal forest and suggest adaptation options such as increasing suppression efficiency at the hotspots. We model two scenarios of improved reaction times—stopping a fire within 4 days and within 24 h—which could reduce average burned forest areas by 48.6% and 79.2%, respectively, compared to projected burned areas without adaptation from 2021–2099

    Integrating Human Domain Knowledge into Artificial Intelligence for Hybrid Forest Fire Prediction: Case Studies from South Korea and Italy

    Get PDF
    Forest fires pose a growing global threat, exacerbated by climate change-induced heat waves. The intricate interplay between changing climate, biophysical, and anthropogenic factors emphasizes the urgent need for sophisticated predictive models. Existing models, whether process-based for interpretability or machine learning-based for automatic feature identification, have distinct strengths and weaknesses. This study addresses these gaps by integrating human domain knowledge, crucial for interpreting forest fire dynamics, into a machine learning framework. We introduce FLAM-Net, a neural network derived from IIASA's wildfire Climate impacts and Adaptation Model (FLAM), melding process-based insights of FLAM with machine learning capabilities. In optimizing FLAM-Net for South Korea, new algorithms interpret national-specific forest fire patterns, and multi-scale applications, facilitated by U-Net-based deep neural networks (DN-FLAM), yield downscaled predictions. Successfully tailored to South Korea's context, FLAM-Net and DN-FLAM reveal spatial concentration near metropolitan areas and the east coastal region, with temporal concentration in spring. Performance evaluation yields Pearson's r values of 0.943, 0.840, and 0.641 for temporal, spatial, and spatio-temporal dimensions. Projections based on Shared Socioeconomic Pathways (SSP) indicate an increasing trend in forest fires until 2050, followed by a decrease due to increased precipitation. During the optimization process of FLAM-Net for Italy, optimal parameters for sub-areas are identified. This involves considering biophysical and anthropogenic factors at each grid, contributing to improved localized projection optimization by utilizing various sets of optimal parameters. There by, this process illuminates the intricate connections between environmental factors and their interpretation in the dynamics of forest fires. This study demonstrates the advantages of hybrid models like FLAM-Net and DN-FLAM, seamlessly combining process-based insights and artificial intelligence for interpretability, accuracy, and efficient optimization. The findings contribute scientific evidence for developing context-specific climate resilience strategies, with global applicability to enhance climate resilience

    Production of high-density sintered parts from tungsten carbide powder

    No full text
    • …
    corecore