6 research outputs found

    Comparative Genomics of Vancomycin-Resistant Staphylococcus aureus Strains and Their Positions within the Clade Most Commonly Associated with Methicillin-Resistant S. aureus Hospital-Acquired Infection in the United States

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) strains are leading causes of hospital-acquired infections in the United States, and clonal cluster 5 (CC5) is the predominant lineage responsible for these infections. Since 2002, there have been 12 cases of vancomycin-resistant S.Ā aureus (VRSA) infection in the United Statesā€”all CC5 strains. To understand this genetic background and what distinguishes it from other lineages, we generated and analyzed high-quality draft genome sequences for all available VRSA strains. Sequence comparisons show unambiguously that each strain independently acquired Tn1546 and that all VRSA strains last shared a common ancestor over 50Ā years ago, well before the occurrence of vancomycin resistance in this species. In contrast to existing hypotheses on what predisposes this lineage to acquire Tn1546, the barrier posed by restriction systems appears to be intact in most VRSA strains. However, VRSA (and other CC5) strains were found to possess a constellation of traits that appears to be optimized for proliferation in precisely the types of polymicrobic infection where transfer could occur. They lack a bacteriocin operon that would be predicted to limit the occurrence of non-CC5 strains in mixed infection and harbor a cluster of unique superantigens and lipoproteins to confound host immunity. A frameshift in dprA, which in other microbes influences uptake of foreign DNA, may also make this lineage conducive to foreign DNA acquisition

    A core microbiome associated with the peritoneal tumors of pseudomyxoma peritonei

    Get PDF
    Pseudomyxoma peritonei (PMP) is a malignancy characterized by dissemination of mucus-secreting cells throughout the peritoneum. This disease is associated with significant morbidity and mortality and despite effective treatment options for early-stage disease, patients with PMP often relapse. Thus, there is a need for additional treatment options to reduce relapse rate and increase long-term survival. A previous study identified the presence of both typed and non-culturable bacteria associated with PMP tissue and determined that increased bacterial density was associated with more severe disease. These findings highlighted the possible role for bacteria in PMP disease. To more clearly define the bacterial communities associated with PMP disease, we employed a sequenced-based analysis to profile the bacterial populations found in PMP tumor and mucin tissue in 11 patients. Sequencing data were confirmed by in situ hybridization at multiple taxonomic depths and by culturing. A pilot clinical study was initiated to determine whether the addition of antibiotic therapy affected PMP patient outcome. We determined that the types of bacteria present are highly conserved in all PMP patients; the dominant phyla are the Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. A core set of taxon-specific sequences were found in all 11 patients; many of these sequences were classified into taxonomic groups that also contain known human pathogens. In situ hybridization directly confirmed the presence of bacteria in PMP at multiple taxonomic depths and supported our sequence-based analysis. Furthermore, culturing of PMP tissue samples allowed us to isolate 11 different bacterial strains from eight independent patients, and in vitro analysis of subset of these isolates suggests that at least some of these strains may interact with the PMP-associated mucin MUC2. Finally, we provide evidence suggesting that targeting these bacteria with antibiotic treatment may increase the survival of PMP patients. Using 16S amplicon-based sequencing, direct in situ hybridization analysis and culturing methods, we have identified numerous bacterial taxa that are consistently present in all PMP patients tested. Combined with data from a pilot clinical study, these data support the hypothesis that adding antimicrobials to the standard PMP treatment could improve PMP patient survival.https://doi.org/10.1186/1750-1172-8-10

    Direct Targets of CodY in Staphylococcus aureusā–æ ā€ 

    No full text
    More than 200 direct CodY target genes in Staphylococcus aureus were identified by genome-wide analysis of in vitro DNA binding. This analysis, which was confirmed for some genes by DNase I footprinting assays, revealed that CodY is a direct regulator of numerous transcription units associated with amino acid biosynthesis, transport of macromolecules, and virulence. The virulence genes regulated by CodY fell into three groups. One group was dependent on the Agr system for its expression; these genes were indirectly regulated by CodY through its repression of the agr locus. A second group was regulated directly by CodY. The third group, which includes genes for alpha-toxin and capsule synthesis, was regulated by CodY in two ways, i.e., by direct repression and by repression of the agr locus. Since S. aureus CodY was activated in vitro by the branched chain amino acids and GTP, CodY appears to link changes in intracellular metabolite pools with the induction of numerous adaptive responses, including virulence
    corecore