3 research outputs found

    Simulation Model Based Response Management Related to Railway (Earthquake) Disaster

    Get PDF
    Railway system as part of the general transportation system is a strategic element that supports the economy and the society. Its role is continuously rising with rapid industrialization, urbanization, and changes in the society expectations regarding sustainable systems. New and emerging technologies call and permit the augmentation of the railway systems’ disaster management. This paper deals with the development of an improved response management concept related to railways’ damage, caused by earthquakes. The paper synthetizes the latest technologies, engineering, and management methods in one improved response management system. After the concept inspiration, the paper describes the applicable novel models and introduces an improved response management being developed for railway systems, damaged by earthquakes. The concept is verified in simulation. The novelty includes a new approach in the identification of the critical infrastructure, the risk assessment, the prediction of aftershocks and the recursive application of the adaptive Markov process to the simulation supporting the response management concept

    Sustainable Disaster Response Management Related to Large Technical Systems

    No full text
    Numerous investigations assess the technical, technological, and managerial aspects of disaster response related to large technical systems. This paper deals with the possibility of synthesizing these aspects in a disaster response methodology, thus combining the technical, technological methods, tools, and software with the art of management. Its objective is to develop a preliminary methodology that supports the response management decision making processes related to earthquake-damaged large technical systems. The introduced methodology is demonstrated with the example of railway systems. It utilizes a combination of (i) a probabilistic model of railway system damage caused by earthquakes, (ii) a Markov model related to the damage and recovery phases, (iii) a probabilistic model of aftershocks, (iv) a statistical model of secondary effects, (v) impact models of management support actions, and (vi) response process management supported by a Markov Decision Process. The simulation results validate the concept. Based on these research results, the authors recommend that the described preliminary response management approach be further specified and implemented in disaster management procedures

    An application of impact calculation method in transportation

    Get PDF
    Forecasted/projected rise of impacts in modes of transportation has necessitated a new rethinking of the evaluation of total impact. While most researchers deal with defined parts (like environmental impact) of the total impact. The total impact calculation methodology includes: (1) analysis of all the impacts (environmental impact, safety and security, costs, cost benefits and sustainability), (2) evaluation on the transportation system level, (3) as their total value (including all the related sub-systems and elements, i.e. transport infrastructure, transport flow control), (4) generation of total impact index. Such an index might be called as transport total sustainability index. The paper defines the Total Impact Performance Index (TIPI) evaluating the total impact in the form of generalized (summarized) costs, specifies its calculation methodology, develops a simplified Excel based calculation methods. It aims to demonstrate the applicability of this methodology, which involves evaluation of impacts in more detailed forms, two parts calculation methods namely impact of road transport safety aspects and impact of the railway transport. Finally, some selected results of the applied new index calculation and developed methodology are introduced and analysed
    corecore