536 research outputs found

    Nonlocal mechanism for cluster synchronization in neural circuits

    Full text link
    The interplay between the topology of cortical circuits and synchronized activity modes in distinct cortical areas is a key enigma in neuroscience. We present a new nonlocal mechanism governing the periodic activity mode: the greatest common divisor (GCD) of network loops. For a stimulus to one node, the network splits into GCD-clusters in which cluster neurons are in zero-lag synchronization. For complex external stimuli, the number of clusters can be any common divisor. The synchronized mode and the transients to synchronization pinpoint the type of external stimuli. The findings, supported by an information mixing argument and simulations of Hodgkin Huxley population dynamic networks with unidirectional connectivity and synaptic noise, call for reexamining sources of correlated activity in cortex and shorter information processing time scales.Comment: 8 pges, 6 figure

    Field theory of directed percolation with long-range spreading

    Get PDF
    It is well established that the phase transition between survival and extinction in spreading models with short-range interactions is generically associated with the directed percolation (DP) universality class. In many realistic spreading processes, however, interactions are long ranged and well described by L\'{e}vy-flights, i.e., by a probability distribution that decays in dd dimensions with distance rr as rdσr^{-d-\sigma}. We employ the powerful methods of renormalized field theory to study DP with such long range, L\'{e}vy-flight spreading in some depth. Our results unambiguously corroborate earlier findings that there are four renormalization group fixed points corresponding to, respectively, short-range Gaussian, L\'{e}vy Gaussian, short-range DP and L\'{e}vy DP, and that there are four lines in the (σ,d)(\sigma, d) plane which separate the stability regions of these fixed points. When the stability line between short-range DP and L\'{e}vy DP is crossed, all critical exponents change continuously. We calculate the exponents describing L\'{e}vy DP to second order in ϵ\epsilon-expansion, and we compare our analytical results to the results of existing numerical simulations. Furthermore, we calculate the leading logarithmic corrections for several dynamical observables.Comment: 12 pages, 3 figure

    Unravelling quantum carpets: a travelling wave approach

    Get PDF
    Quantum carpets are generic spacetime patterns formed in the probability distributions P(x,t) of one-dimensional quantum particles, first discovered in 1995. For the case of an infinite square well potential, these patterns are shown to have a detailed quantitative explanation in terms of a travelling-wave decomposition of P(x,t). Each wave directly yields the time-averaged structure of P(x,t) along the (quantised)spacetime direction in which the wave propagates. The decomposition leads to new predictions of locations, widths depths and shapes of carpet structures, and results are also applicable to light diffracted by a periodic grating and to the quantum rotator. A simple connection between the waves and the Wigner function of the initial state of the particle is demonstrated, and some results for more general potentials are given.Comment: Latex, 26 pages + 6 figures, submitted to J. Phys. A (connections with prior literature clarified

    Precise Critical Exponents for the Basic Contact Process

    Full text link
    We calculated some of the critical exponents of the directed percolation universality class through exact numerical diagonalisations of the master operator of the one-dimensional basic contact process. Perusal of the power method together with finite-size scaling allowed us to achieve a high degree of accuracy in our estimates with relatively little computational effort. A simple reasoning leading to the appropriate choice of the microscopic time scale for time-dependent simulations of Markov chains within the so called quantum chain formulation is discussed. Our approach is applicable to any stochastic process with a finite number of absorbing states.Comment: LaTeX 2.09, 9 pages, 1 figur

    Spontaneous Symmetry Breaking in Directed Percolation with Many Colors: Differentiation of Species in the Gribov Process

    Full text link
    A general field theoretic model of directed percolation with many colors that is equivalent to a population model (Gribov process) with many species near their extinction thresholds is presented. It is shown that the multicritical behavior is always described by the well known exponents of Reggeon field theory. In addition this universal model shows an instability that leads in general to a total asymmetry between each pair of species of a cooperative society.Comment: 4 pages, 2 Postscript figures, uses multicol.sty, submitte

    A study of logarithmic corrections and universal amplitude ratios in the two-dimensional 4-state Potts model

    Full text link
    Monte Carlo (MC) and series expansion (SE) data for the energy, specific heat, magnetization and susceptibility of the two-dimensional 4-state Potts model in the vicinity of the critical point are analysed. The role of logarithmic corrections is discussed and an approach is proposed in order to account numerically for these corrections in the determination of critical amplitudes. Accurate estimates of universal amplitude ratios A+/AA_+/A_-, Γ+/Γ\Gamma_+/\Gamma_-, ΓT/Γ\Gamma_T/\Gamma_- and RC±R_C^\pm are given, which arouse new questions with respect to previous works

    On time's arrow in Ehrenfest models with reversible deterministic dynamics

    Full text link
    We introduce a deterministic, time-reversible version of the Ehrenfest urn model. The distribution of first-passage times from equilibrium to non-equilibrium states and vice versa is calculated. We find that average times for transition to non-equilibrium always scale exponentially with the system size, whereas the time scale for relaxation to equilibrium depends on microscopic dynamics. To illustrate this, we also look at deterministic and stochastic versions of the Ehrenfest model with a distribution of microscopic relaxation times.Comment: 6 pages, 7 figures, revte

    Inferring hidden states in Langevin dynamics on large networks: Average case performance

    Get PDF
    We present average performance results for dynamical inference problems in large networks, where a set of nodes is hidden while the time trajectories of the others are observed. Examples of this scenario can occur in signal transduction and gene regulation networks. We focus on the linear stochastic dynamics of continuous variables interacting via random Gaussian couplings of generic symmetry. We analyze the inference error, given by the variance of the posterior distribution over hidden paths, in the thermodynamic limit and as a function of the system parameters and the ratio {\alpha} between the number of hidden and observed nodes. By applying Kalman filter recursions we find that the posterior dynamics is governed by an "effective" drift that incorporates the effect of the observations. We present two approaches for characterizing the posterior variance that allow us to tackle, respectively, equilibrium and nonequilibrium dynamics. The first appeals to Random Matrix Theory and reveals average spectral properties of the inference error and typical posterior relaxation times, the second is based on dynamical functionals and yields the inference error as the solution of an algebraic equation.Comment: 20 pages, 5 figure

    Critical behaviour of a surface reaction model with infinitely many absorbing states

    Full text link
    In a recent letter [J. Phys. A26, L801 (1993)], Yaldram et al. studied the critical behaviour of a simple lattice gas model of the CO-NO catalytic reaction. The model exhibits a second order nonequilibrium phase transition from an active state into one out of infinitely many absorbing states. Estimates for the critical exponent β\beta suggested that the model belongs to a new universality class. The results reported in this article contradict this notion, as estimates for various critical exponents show that the model belongs to the universality class of directed percolation.Comment: 10p+5fig, LaTeX+fig in uuencoded P
    corecore