27 research outputs found

    Improving the Productivity of Plants using an LED Light Equipped with a Control Module

    No full text

    sll1961 is a novel regulator of phycobilisome degradation during nitrogen starvation in the cyanobacterium Synechocystis sp. PCC 6803

    Get PDF
    AbstractThe sll1961 gene was reported to encode a regulatory factor of photosystem stoichiometry in the cyanobacterium Synechocystis sp. PCC 6803. We here show that the sll1961 gene is also essential for the phycobilisome degradation during nitrogen starvation. The defect in phycobilisome degradation was observed in the sll1961 mutant despite the increased expression of nblA, a gene involved in phycobilisome degradation during nitrogen starvation. Photosystem stoichiometry is not affected by nitrogen starvation in the sll1961 mutant nor in the wild-type. The results indicate the presence of a novel pathway for phycobilisome degradation control independent of nblA expression

    Over-reduced states of the Mn-cluster in cucumber leaves induced by dark-chilling treatment

    Get PDF
    AbstractOxygen evolution is inhibited when leaves of chilling-sensitive plants like cucumber are treated at 0 °C in the dark. The activity is restored by moderate illumination at room temperature. We examined the changes in the redox state of the Mn-cluster in cucumber leaves in the processes of dark-chilling inhibition and subsequent light-induced reactivation by means of thermoluminescence (TL). A TL B-band arising from S2QB− charge recombination in PSII was observed upon single-flash illumination of untreated leaves, whereas four flashes were required to yield the B-band after dark-chilling treatment for 24 h. This three-step delay indicates that over-reduced states of the Mn-cluster such as the S−2 state were formed during the treatment. Fitting analysis of the flash-number dependence of the TL intensities showed that the Mn-cluster was more reduced with a longer period of the treatment and that S−3 was the lowest S-state detectable in the dark-chilled leaves. Measurements of the Mn content by atomic absorption spectroscopy showed that Mn atoms were gradually released from PSII during the dark-chilling treatment but re-bound to PSII by illumination at 30 °C. Thus, dark-chilling inhibition of oxygen evolution can be ascribed to the disintegration of the Mn-cluster due to its over-reduction. The observation of the S−3 state in the present in vivo system strongly suggests that S−3, which has been observed only by addition of exogenous reductants into in vitro preparations, is indeed a redox intermediate of the Mn-cluster in the processes of its disintegration and photoactivation

    DNA Microarray Analysis of Redox-Responsive Genes in the Genome of the Cyanobacterium Synechocystis sp. Strain PCC 6803

    Get PDF
    Whole-genome DNA microarrays were used to evaluate the effect of the redox state of the photosynthetic electron transport chain on gene expression in Synechocystis sp. strain PCC 6803. Two specific inhibitors of electron transport, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), were added to the cultures, and changes in accumulation of transcripts were examined. About 140 genes were highlighted as reproducibly affected by the change in the redox state of the photosynthetic electron transport chain. It was shown that some stress-responsive genes but not photosynthetic genes were under the control of the redox state of the plastoquinone pool in Synechocystis sp. strain PCC 6803

    Destruction of photosystem I iron-sulfur centers in leaves of Cucumis sativus L. by weak illumination at chilling temperatures

    Get PDF
    AbstractThe activity of photosystem (PS) I in cucumber leaves was selectively inhibited by weak illumination at chilling temperatures with almost no loss of P-700 content and PSII activity. The sites of inactivation in the reducing side of PSI were determined by EPR and flash photolysis. Measurement by EPR showed the destruction of iron-sulfur centers, FX, FA and FB,in parallel with the loss of quantum yield of electron transfer from diaminodurene to NADP+. Flash photolysis showed the increases in the triplet states of P-700 and antenna pigments, along with the decrease in the electron transfer from P-700 to FA/FB. This indicates the increase in the charge recombination between P-700+ and A0−. It is concluded that weak-light treatment of cucumber leaves at chilling temperature destroys FX, FA and FB and possibly A1. This gives the molecular basis for the mechanism of selective PSI photodamage that was recently reported [Sonoike and Terashima (1994) Planta 194, 287–293]

    Morphological and cytological observations of corolla green spots reveal the presence of functional chloroplasts in Japanese gentian.

    No full text
    Gentian is an important ornamental flower in Japan. The corolla of the majority of cultivated Japanese gentians have green spots, which are rarely encountered in flowers of other angiosperms. Little information is available on the functional traits of the green spots. In this study, we characterized the green spots in the Japanese gentian corolla using a number of microscopic techniques. Opto-digital microscopy revealed that a single visible green spot is composed of approximately 100 epidermal cells. The epidermal cells of a green spot formed a dome-like structure and the cell lumen contained many green structures that were granular and approximately 5 ÎŒm in diameter. The green structures emitted red autofluorescence when irradiated with 488 nm excitation light. Transmission electron microscopy revealed that the green structures contained typical thylakoids and grana, thus indicating they are chloroplasts. No grana were observed and the thylakoids had collapsed in the plastids of epidermal cells surrounding green spots. To estimate the rate of photosynthetic electron transfer of the green spots, we measured chlorophyll fluorescence using the MICROSCOPY version of an Imaging-PAM (pulse-amplitude-modulated) fluorometer. Under actinic light of 449 ÎŒmol m-2 s-1, substantial electron flow through photosystem II was observed. Observation of green spot formation during corolla development revealed that immature green spots formed at an early bud stage and developed to maturity associated with chloroplast degradation in the surrounding epidermal cells. These results confirmed that the Japanese gentian corolla contains functional chloroplasts in restricted areas of epidermal cells and indicated that a sophisticated program for differential regulation of chloroplast formation and degradation is operative in the epidermis

    Guard cell photosynthesis is crucial in abscisic acid‐induced stomatal closure

    No full text
    Abstract Reactive oxygen species (ROS) are ubiquitous signaling molecules involved in diverse physiological processes, including stomatal closure. Photosynthetic electron transport (PET) is the main source of ROS generation in plants, but whether it functions in guard cell signaling remains unclear. Here, we assessed whether PET functions in abscisic acid (ABA) signaling in guard cells. ABA‐elicited ROS were localized to guard cell chloroplasts in Arabidopsis thaliana, Commelina benghalensis, and Vicia faba in the light and abolished by the PET inhibitors 3‐(3, 4‐dichlorophenyl)‐1, 1‐dimethylurea and 2, 5‐dibromo‐3‐methyl‐6‐isopropyl‐p‐benzoquinone. These inhibitors reduced ABA‐induced stomatal closure in all three species, as well as in the NADPH oxidase‐lacking mutant atrboh D/F. However, an NADPH oxidase inhibitor did not fully eliminate ABA‐induced ROS in the chloroplasts, and ABA‐induced ROS were still observed in the guard cell chloroplasts of atrboh D/F. This study demonstrates that ROS generated through PET act as signaling molecules in ABA‐induced stomatal closure and that this occurs in concert with ROS derived through NADPH oxidase
    corecore