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Abstract The sll1961 gene was reported to encode a regulatory
factor of photosystem stoichiometry in the cyanobacterium Syn-
echocystis sp. PCC 6803. We here show that the sll1961 gene is
also essential for the phycobilisome degradation during nitrogen
starvation. The defect in phycobilisome degradation was ob-
served in the sll1961 mutant despite the increased expression of
nblA, a gene involved in phycobilisome degradation during nitro-
gen starvation. Photosystem stoichiometry is not affected by
nitrogen starvation in the sll1961 mutant nor in the wild-type.
The results indicate the presence of a novel pathway for phyco-
bilisome degradation control independent of nblA expression.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Photosynthetic organisms have developed various mecha-

nisms that enable them to acclimate to ever-changing environ-

mental conditions such as light or nutrient availability. These

processes involve the coordination of different reactions in

photosynthesis, or that of photosynthesis with other metabolic

pathways [1,2]. For example, nitrogen assimilation requires

reducing power produced by photosynthetic electron transfer,

so that coordination between these two metabolic pathways is

indispensable [3]. Modulation of photosystem stoichiometry,

i.e. the ratio of two photosystems (PSI and PSII), is one of

the regulatory mechanisms of photosynthesis and is important

for the optimization of photosynthesis in response to changes

in light intensity [4,5], light quality [6–8] and certain environ-

mental stress conditions [9,10]. Under high light conditions,

modulation of photosystem stoichiometry is essential to

down-regulate photosynthetic electron transfer [11]. In our

previous study, the sll1961 was identified as a gene involved

in the modulation of photosystem stoichiometry in Synecho-

cystis sp. PCC 6803 [12]. The phenotype of sll1961 disruptant

is similar to that of pmgA mutant, pmgA being another gene

that is involved in the regulation of photosystem stoichiometry

under high light condition [5,11,13]. Both mutants lost the
Abbreviations: PS, photosystem; PBS, phycobilisome; PC, phycocya-
nin; Chl, chlorophyll
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ability to suppress the level of PSI under high light condition

[11,12]. Although several other genes were reported to be in-

volved in the regulation of photosystem stoichiometry [14],

the relationship among these components remains unknown.

An ortholog of the pmgA gene in Synechococcus elongatus

PCC 7942 is necessary for the degradation of phycobilisome

(PBS) upon nitrogen starvation, and was named nblC [15].

During nitrogen starvation, the degradation of PBS plays a

critical role to meet cellular nitrogen demand [16]. The degra-

dation of PBS results in a color change of the culture from

blue-green to yellow, a process called bleaching [17,18]. During

nitrogen starvation, NblC regulates transcriptional induction

of nblA, whose product was reported to interact with some

phycobiliprotein subunits [19,20] and to be involved in PBS

degradation in S. elongatus PCC 7942 [15]. NblA orthologs

are found in many cyanobacteria and red algae [21–23]. In

Synechocystis sp. PCC 6803, there are two nblA genes, namely

nblA1 (ssl0452) and nblA2 (ssl0453). Both genes are required

for PBS degradation during nitrogen starvation [21].

The fact that the Synechococcus sp. PCC 7942 ortholog of

pmgA, previously reported to be involved in the regulation

of photosystem stoichiometry under high light conditions, is

involved in the response to nitrogen starvation may suggest

existence of a crosstalk between the two acclimatory responses.

In the present study, we compare the effects of nitrogen starva-

tion on pmgA and sll1961 mutants: while the pmgA mutant is

able to degrade its PBS, the sll1961 mutant has a non-bleach-

ing phenotype, demonstrating that the gene product of sll1961

participates in the degradation of PBS.
2. Materials and methods

A wild-type strain, the sll1961 mutant (0205-79) [12] and pmgA
(sll1968) mutant disrupted by spectinomycin cassette [24] of Synecho-
cystis sp. PCC 6803 were grown with bubbling of air (i.e. about
0.04% CO2) as described previously [12], except for the growth light
condition (50 lmol m�2 s�1). To confirm the non-bleaching pheno-
type, deletion mutant of sll1961 with spectinomycin cassette [12] was
also used. For nitrogen starvation experiments, exponentially grown
cells were harvested by centrifugation and washed with BG11 medium
lacking nitrate (BG110). The washed cells were resuspended in BG110

and used for experiments.
Disruptant of nblA was generated by the replacement of a part of

nblA genes (53rd nucleotide of nblA1 to 97th nucleotide of nblA2) with
a spectinomycin-resistant cassette using SphI and HpaI sites. The nblA
disruptant was grown in the presence of 20 lg/ml spectinomycin.

Absorption spectra of whole cells were measured using a spectro-
photometer (Model 356, Hitachi, Tokyo, Japan) [15]. Chlorophyll
(Chl) and phycocyanin (PC) contents were calculated using the equa-
blished by Elsevier B.V. All rights reserved.
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tions of Arnon et al. [25]. The number of cells was determined by mea-
suring OD730 (1.1 · 108 cells/ml at 1 OD730 [14]) with a spectrophotom-
eter (GeneSpecIII, Hitachi, Tokyo, Japan).

Fluorescence emission spectra at 77 K were measured as described in
[12] with a band-pass filter (CS 4-96, Corning, NY, USA) and a di-
chroic filter (DF Blue, Optical Coatings Japan, Tokyo, Japan) for
Chl excitation. Before fluorescence measurements, cells were dark
adapted (>10 min) at room temperature to lock the cells to state II
and frozen in the dark with liquid nitrogen.

For Northern blot analysis, total RNA was isolated from the cells as
described in [32]. RNA was subjected to electrophoresis on 0.9% aga-
rose gels (10 lg of total RNA was loaded per lane) and blotted onto
nylon membranes (Pall Corporation Biodyne PLUS). DIG labeling
and detection were performed according to the system application
manual (Roche, Mannheim, Germany). To make a DIG-labeled
DNA probe, nblA1–2 was amplified by PCR and then labeled with
DIG (Roche, Mannheim, Germany). The following primers were used
for the probe by PCR: nblA forward: 5 0-TTGGAGGGGCAACAGCT
ATGAA-30, nblA reverse: 50-GGGGAGGAGTGAATTTTTCATC-30.
Dig labeled transcripts were detected by chemiluminescence using an
LAS1000 image analyzer (Fuji Photo Film, Tokyo, Japan).

For RT-PCR, total RNA was isolated by the RNeasy Midi kit (Qia-
gen, Hilden, Germany) and treated with DNaseI to eliminate genomic
DNA. RT-PCR was performed by TaKaRa RNA PCR kit (TaKaRa,
Tokyo, Japan) using 0.5 lg of total RNA. The following primers were
used for amplification of sll1961 or rnpB: sll1961 forward: 5 0-ATGCT
ACAGTTCCAAATTCA-3 0, sll1961 reverse: 5 0-TTAAGCCGTGGC
CACTTTTG-3 0, rnpB forward: 5 0-CGCCCAGTGCGCGCGAGCG
TGAGGA-30, rnpB reverse: 5 0-CCTCCGACCTTGCTTCCAACCG
GGG-3 0. DNA was amplified using PTC-200 Peltier thermal cycler
(MJ Research, USA).
Fig. 1. Pigment profiles during nitrogen starvation. (A) Color of liquid
culture of WT (1 and 4), the sll1961 mutant (2 and 5) and pmgA
mutant (3 and 6) grown in complete medium (1–3) or in nitrogen-
deficient medium (BG110) for 48 h (4–6). (B) Absorbance spectra of
whole cells of WT, the sll1961 mutant (Dsll1961) and the pmgA mutant
(DpmgA) with (+N) and without (�N) nitrogen in BG11 medium. (C)
The levels of phycocyanin (PC) on a per-cell basis and (D) the levels of
chlorophyll (Chl) on a per-cell basis in WT (circles), sll1961 mutant
(squares) and pmgA mutant (triangles) during nitrogen starvation. (E)
PC/Chl ratio. The 100% values correspond to the values before the
shift to BG110. This initial PC/Chl ratio of WT, the sll1961 and pmgA
mutant was 7.17, 6.75 and 6.51, respectively.

Fig. 2. Expression of cpc genes encoding phycocyanin during nitrogen
starvation. Northern blot analysis of cpcBA expression was performed
in WT and the sll1961 mutant at 0, 3, 6, 12, 24 h following the shift to
BG110. A DNA probe specific for cpcA was used for hybridization
(upper panel). rRNA was used as a loading control (lower panel).
3. Results and discussion

3.1. sll1961 is involved in PBS degradation under nitrogen

starvation

Wild-type (WT) cells grown in complete BG11 medium

showed typical blue-green color (Fig. 1A-1), while those

grown in medium lacking nitrogen source (BG110) showed

bleaching after 48 h (Fig. 1A-4). Although the sll1961 dis-

ruptant was indistinguishable from the WT when grown in

BG11 (Fig. 1A-2), the mutant grown in BG110 remained

blue-green (Fig. 1A-5), suggesting that the reduction in the

amount of PBS was impaired in the sll1961 mutant. In con-

trast, the pmgA mutant became chlorotic in BG110 (Fig. 1A-

6). These changes in color could be confirmed by the change

in the absorption spectra of the cell cultures. The absorption

around 620 nm due to PC in PBS decreased during nitrogen

starvation of the WT and the pmgA mutant cells but not of

the sll1961 mutant cells (Fig. 1B). The levels of both Chl

and PC decreased in all strains after the shift to BG110

(Fig. 1C and D), but the decrease in the PC content of

the sll1961 mutant was less prominent, leading to the con-

stant PC/Chl ratio upon nitrogen starvation (Fig. 1E,

squares). Non-bleaching phenotype was also observed in

the deletion mutant of sll1961 with spectinomycin cassette

(data not shown). The results indicate that the sll1961 mu-

tant has a defect in the reduction of PBS content upon

nitrogen starvation, in addition to the defect in the regula-

tion of photosystem stoichiometry under high light condi-

tions that was previously reported [12]. The lack of

decrease of PBS upon nitrogen starvation in the sll1961 mu-

tant is not due to the enhanced synthesis of phycobilipro-

teins, since the suppression, rather than the enhancement,

of the expression of the cpc genes encoding PBS components

was observed during nitrogen starvation (Fig. 2). The pmgA
mutant showed normal pigment reduction upon nitrogen

starvation, unlike the nblC mutant in S. elongatus PCC

7942. In Synechocystis 6803, mutations in the orthologs of

nblS (dspA) and nblR, which regulate PBS degradation in

S. elongatus PCC 7942, result in normal PBS degradation

and normal expression of nblA under nitrogen starvation

[26,27]. Apparently, the mechanism of bleaching is different

between S. elongatus PCC 7942 and Synechocystis sp. PCC

6803.



Table 1
Photosystem stoichiometry of WT and the sll1961 mutant before or
after the shift to BG110 medium for 48 h

Strain F725/ F695

BG11 BG110

WT 6.84 ± 0.40 7.15 ± 0.85
Dsll1961 6.70 ± 0.44 6.91 ± 0.86

The ratio of the peak height of PSI band (F725) and PSII band (F695)
of the chlorophyll fluorescence spectra determined at 77 K was cal-
culated for three different cultures and shown as means ± S.D.
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3.2. Effect of sll1961 disruption on the expression of nblA under

nitrogen starvation

In all the nbl (non-bleaching) mutants reported so far, the

level of nblA expression is lower than that in WT under

nitrogen starvation [15,28–31], suggesting that nblA is a pri-

mary factor in PBS degradation. In WT cells, the transcript

levels of nblA (nblA1 plus nblA2) increased after the shift to

BG110 medium (Fig. 3). The increase of the transcript level

of nblA during 12 h of incubation in BG110 medium was

more prominent in the sll1961 mutant than in the WT.

Thus, the inactivation of sll1961 leads to enhancement,

rather than suppression, of the transcription of nblA under

nitrogen starvation. In contrast, inactivation of pmgA par-

tially lowered the transcript level of nblA. The result sug-

gests that pmgA may function in the positive regulation of

nblA during nitrogen starvation, as previously reported for

nblC in S. elongatus PCC 7942 [15]. In spite of less expres-

sion of nblA, normal bleaching was observed in the pmgA

mutant, implying that mRNA level of nblA was sufficient

for PBS degradation during nitrogen starvation in the pmgA

mutant. In S. elongatus PCC 7942, disruptants of nblR, nblS

and nblC all showed defects leading to a decreased nblA

expression under nitrogen starvation [15,28–31]. Thus, it

was assumed that the phenotype of the disruptants of nbl

genes was ascribed to the decreased level of nblA in the mu-

tants. The pmgA mutant, however, exhibits typical bleaching

phenotype with lowered expression of nblA. This raises the

possibility that there is some mechanism of PBS degradation

independent of the mRNA accumulation of nblA.

3.3. mRNA level of sll1961 was lower in the nblA mutant under

nitrogen starvation

The transcript level of sll1961 was low in WT cells grown in

BG11 medium but increased after the shift to BG110 medium

(Fig. 4). In contrast, the transcript level of sll1961 in an nblA1–

nblA2 deletion mutant did not show significant increase even
Fig. 3. Expression of nblA during nitrogen starvation. Cells of WT, the
sll1961 mutant and the pmgA mutant were shifted to BG110 medium,
and sampled at 0, 3, 6, 12 and 24 h following the shift. Northern blot
analysis was performed with DNA probe specific for nblA (upper
panel). rRNA was shown as a loading control (lower panel).

Fig. 4. Expression of sll1961 during nitrogen starvation. Cells of WT
and the nblA mutant were shifted to BG110 medium, and sampled at 0,
3, 6, 12 and 24 h following the shift. RT-PCR was performed using
primers for sll1961 (upper panel) or for rnpB whose expression is
relatively constant (lower panel).
after the shift to BG110 medium (Fig. 4). The nblA mutant

showed non-bleaching phenotype when grown in BG110 med-

ium for 48 h (data not shown) as previously reported [26]. The

result implies a decreased stability of sll1961 mRNA in the

nblA mutant during nitrogen starvation, although one could

not rule out the possibility that NblA acts upstream of

sll1961 and up-regulates sll1961 to produce or activate other

factor(s) such as protease during nitrogen starvation. Further-

more, the non-bleaching phenotype of the nblA mutant might

be linked to the reduced level of the sll1961 transcript.

3.4. Nitrogen starvation does not cause a change in photosystem

stoichiometry

We then tested whether the change in photosystem stoichi-

ometry is brought about by nitrogen starvation and is regu-

lated by sll1961. When chlorophyll fluorescence emission

spectra is determined at 77 K, cyanobacterial cells show PSI

fluorescence band at around 725 nm (F725) and PSII fluores-

cence band at around 695 nm and 685 nm (F695, F685). As

a result, we can use F725/F695 as an index of photosystem

stoichiometry. We determined fluorescence spectra with Chl

excitation to avoid secondary effect of the change in PBS con-

tent on the fluorescence spectra through energy transfer from

PBS to photosystems. Neither WT nor the sll1961 mutant

showed any difference in photosystem stoichiometry after

48 h of nitrogen starvation (Table 1). The result demonstrates

that photosystem stoichiometry is not different between WT

and the sll1961 mutant irrespective of nitrogen availability.

Photosystem stoichiometry is modulated under various envi-

ronmental conditions including different photon flux densities,

different light quality and different salinity. The modulation

was induced by the change in the redox level of electron trans-

port [32], although little is known about the actual sensing mech-

anism. Since excess CO2 fixation under high light condition can

induce a high carbon/nitrogen (C/N) ratio in cellular metabo-

lisms, the change in C/N balance might be sensed as a high light

signal [33]. However, we showed that photosystem stoichiome-

try was not affected by nitrogen starvation, indicating that the

signal for high light and the signal for nitrogen starvation are

completely different. We propose that Sll1961 is a bi-functional

protein that regulates both photosystem stoichiometry under

high light condition and PBS degradation under nitrogen starva-

tion. The gene product of sll1961 may act as a regulatory factor

for PBS degradation independently of nblA induction under

nitrogen starvation.
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