40 research outputs found

    A Generalized Bayesian Approach for Localizing Static Natural Obstacles on Unpaved Roads

    Get PDF
    This paper presents an approach that implements sensor fusion and recursive Bayesian estimation (RBE) to improve a vehicle\u27s ability to perform obstacle detection and localization in unpaved road environments. The proposed approach utilizes RADAR, LiDAR and stereovision fully for sensor fusion to detect and localize static natural obstacles. Each sensor is characterized by a probabilistic sensor model which quantifies level of confidence (LOC) and probability of detection (POD) associatively. Deploying these sensor models enables the fusion of heterogeneous sensors without extensive formulations and with the incorporation of each sensor\u27s strengths. An Extended Kalman filter (EKF) is formulated and implemented for robust and computationally efficient RBE of obstacles\u27 locations while a sensor-equipped vehicle moves and observes them. Results with a test vehicle show the successful detection and localization of a static natural object on an unpaved road has demonstrated the effectiveness of the proposed approach

    The Loss of PGAM5 Suppresses the Mitochondrial Degeneration Caused by Inactivation of PINK1 in Drosophila

    Get PDF
    PTEN-induced kinase 1 (PINK1), which is required for mitochondrial homeostasis, is a gene product responsible for early-onset Parkinson's disease (PD). Another early onset PD gene product, Parkin, has been suggested to function downstream of the PINK1 signalling pathway based on genetic studies in Drosophila. PINK1 is a serine/threonine kinase with a predicted mitochondrial target sequence and a probable transmembrane domain at the N-terminus, while Parkin is a RING-finger protein with ubiquitin-ligase (E3) activity. However, how PINK1 and Parkin regulate mitochondrial activity is largely unknown. To explore the molecular mechanism underlying the interaction between PINK1 and Parkin, we biochemically purified PINK1-binding proteins from human cultured cells and screened the genes encoding these binding proteins using Drosophila PINK1 (dPINK1) models to isolate a molecule(s) involved in the PINK1 pathology. Here we report that a PINK1-binding mitochondrial protein, PGAM5, modulates the PINK1 pathway. Loss of Drosophila PGAM5 (dPGAM5) can suppress the muscle degeneration, motor defects, and shorter lifespan that result from dPINK1 inactivation and that can be attributed to mitochondrial degeneration. However, dPGAM5 inactivation fails to modulate the phenotypes of parkin mutant flies. Conversely, ectopic expression of dPGAM5 exacerbated the dPINK1 and Drosophila parkin (dParkin) phenotypes. These results suggest that PGAM5 negatively regulates the PINK1 pathway related to maintenance of the mitochondria and, furthermore, that PGAM5 acts between PINK1 and Parkin, or functions independently of Parkin downstream of PINK1

    Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair

    Get PDF
    UV-sensitive syndrome (UVSS) is a genodermatosis characterized by cutaneous photosensitivity without skin carcinoma1, 2, 3, 4. Despite mild clinical features, cells from individuals with UVSS, like Cockayne syndrome cells, are very UV sensitive and are deficient in transcription-coupled nucleotide-excision repair (TC-NER)2, 4, 5, which removes DNA damage in actively transcribed genes6. Three of the seven known UVSS cases carry mutations in the Cockayne syndrome genes ERCC8 or ERCC6 (also known as CSA and CSB, respectively)7, 8. The remaining four individuals with UVSS, one of whom is described for the first time here, formed a separate UVSS-A complementation group1, 9, 10; however, the responsible gene was unknown. Using exome sequencing11, we determine that mutations in the UVSSA gene (formerly known as KIAA1530) cause UVSS-A. The UVSSA protein interacts with TC-NER machinery and stabilizes the ERCC6 complex; it also facilitates ubiquitination of RNA polymerase IIo stalled at DNA damage sites. Our findings provide mechanistic insights into the processing of stalled RNA polymerase and explain the different clinical features across these TC-NER–deficient disorders

    Knock-Down of HDAC2 in Human Induced Pluripotent Stem Cell Derived Neurons Improves Neuronal Mitochondrial Dynamics, Neuronal Maturation and Reduces Amyloid Beta Peptides

    No full text
    Histone deacetylase 2 (HDAC2) is a major HDAC protein in the adult brain and has been shown to regulate many neuronal genes. The aberrant expression of HDAC2 and subsequent dysregulation of neuronal gene expression is implicated in neurodegeneration and brain aging. Human induced pluripotent stem cell-derived neurons (hiPSC-Ns) are widely used models for studying neurodegenerative disease mechanisms, but the role of HDAC2 in hiPSC-N differentiation and maturation has not been explored. In this study, we show that levels of HDAC2 progressively decrease as hiPSCs are differentiated towards neurons. This suppression of HDAC2 inversely corresponds to an increase in neuron-specific isoforms of Endophilin-B1, a multifunctional protein involved in mitochondrial dynamics. Expression of neuron-specific isoforms of Endophilin-B1 is accompanied by concomitant expression of a neuron-specific alternative splicing factor, SRRM4. Manipulation of HDAC2 and Endophilin-B1 using lentiviral approaches shows that the knock-down of HDAC2 or the overexpression of a neuron-specific Endophilin-B1 isoform promotes mitochondrial elongation and protects against cytotoxic stress in hiPSC-Ns, while HDAC2 knock-down specifically influences genes regulating mitochondrial dynamics and synaptogenesis. Furthermore, HDAC2 knock-down promotes enhanced mitochondrial respiration and reduces levels of neurotoxic amyloid beta peptides. Collectively, our study demonstrates a role for HDAC2 in hiPSC-neuronal differentiation, highlights neuron-specific isoforms of Endophilin-B1 as a marker of differentiating hiPSC-Ns and demonstrates that HDAC2 regulates key neuronal and mitochondrial pathways in hiPSC-Ns

    Survey on Japanese Students’ Achievement in Technologlcal Literacy

    No full text
    application/pdfè«–æ–‡(Article)http://webcatplus-equal.nii.ac.jp/libportal/DocDetail?txt_docid=NCID%3AAA1132132
    corecore