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A Generalized Bayesian Approach for Localizing Static Natural
Obstacles on Unpaved Roads

Yoshito Kinoshita1, Josiah Steckenrider2, Ioannis Papakis3 and Tomonari Furukawa4

Abstract— This paper presents an approach that implements
sensor fusion and recursive Bayesian estimation (RBE) to
improve a vehicle’s ability to perform obstacle detection and
localization in unpaved road environments. The proposed ap-
proach utilizes RADAR, LiDAR and stereovision fully for sensor
fusion to detect and localize static natural obstacles. Each
sensor is characterized by a probabilistic sensor model which
quantifies level of confidence (LOC) and probability of detection
(POD) associatively. Deploying these sensor models enables the
fusion of heterogeneous sensors without extensive formulations
and with the incorporation of each sensor’s strengths. An
Extended Kalman filter (EKF) is formulated and implemented
for robust and computationally efficient RBE of obstacles’
locations while a sensor-equipped vehicle moves and observes
them. Results with a test vehicle show the successful detection
and localization of a static natural object on an unpaved road
has demonstrated the effectiveness of the proposed approach.

I. INTRODUCTION

The last couple of decades have seen the development
of new perception technologies following the growing de-
mand for Advanced Driver-Assistant Systems (ADAS) and
autonomous vehicle operation. Among the most intensively
studied topics is the recognition of obstacles in the direc-
tion of travel. Obstacles of highest concern are typically
pedestrians and other objects on paved roads [1], [2], which
are often distinct or dynamic and thus relatively easy to
recognize. Static natural obstacles on unpaved roads such
as rocks, which are of interest in this paper, originate from
the surrounding environment and can be highly unstructured
and indistinguishable. It is therefore imperative that off-road
vehicles have sufficiently advanced capabilities to detect and
localize such obstacles.

To date, most past work associated with autonomous
vehicles has focused on detecting obstacles on paved roads.
Recent work [3], [4], [5] showed advances in detection and
tracking of pedestrians and vehicles in front of a vehicle us-
ing multiple sensors such as RADAR, LiDAR, and cameras.
Chadwick, et al. [6] developed a system with a RADAR
sensor and two cameras of different focal lengths for distant
vehicle detection. Other studies [7], [8], [9] focused on the

1Yoshito Kinoshita is with Komatsu, Ltd., Japan.
yoshito kinoshita@global.komatsu

2Josiah Steckenrider is with Department of Civil and Mechanical
Engineering, United States Military Academy, NY, USA.
john.steckenrider@westpoint.edu

3Ioannis Papakis is with Department of Mechanical Engineering, Virginia
Tech, Blacksburg, VA, USA. ioannis1@vt.edu

4Tomonaari Furukawa is with Department of Mechanical
and Aerospace Engineering, University of Virginia, VA, USA.
tomonari@virginia.edu

detection of small obstacles on paved roads using stereovi-
sion and machine learning techniques. In addition, Xue, et
al. [10] developed a technique to detect small obstacles via
multi-layer image edge detection using a monocular camera.

Meanwhile, obstacle detection on unpaved roads has been
studied primarily in mining and military domains. Automatic
human detection techniques for mining environments using
millimeter-wave RADAR sensors have existed now for a few
decades [11]. Manduchi, et al. [12] classified terrains and
detected obstacles in short range using LiDAR and camera
sensors. However, little research covers the detection and
localization of distant natural obstacles on unpaved roads.
This is largely due to the ill-posed nature of such detection
and localization problems.

This paper presents a generalized approach for improving
vehicle-based obstacle detection and localization in unpaved
road environments. The key contributions of the proposed
approach are: 1) the probabilistic modeling, fusion and
deployment of RADAR, LiDAR and stereo-camera sensors
for detection of static natural obstacles on unpaved roads,
and 2) the formulation of an extended Kalman filter (EKF)
based framework for obstacle localization using this fused
sensory input. These unique contributions aim to overcome
the significant irregularities associated with off-road obstacle
localization. Each sensor is characterized by a probabilistic
sensor model proposed by Furukawa, et al [13], which
quantifies level of confidence (LOC) and probability of
detection (POD) associatively. By deploying such sensor
models, the proposed approach enables heterogeneous sensor
fusion without the need for extensive formulations and with
the incorporation of each sensor’s strengths. The proposed
EKF-based formulation is extracted from generalized recur-
sive Bayesian estimation (RBE) such that the location of
obstacles during vehicle operation can be robustly estimated
even though such obstacle localization is challenging under
traditional approaches.

This paper is organized as follows. The next section deals
with the general framework of RBE that incorporates limited
sensor capability. The proposed modeling and fusion of the
three sensors and EKF-based localization are presented in
Section III. Experimental validation with a test vehicle is
presented in Section IV. Conclusions and future work are
summarized in the final section.

II. RECURSIVE BAYESIAN ESTIMATION

A. Object and Vehicle Models

Consider a static obstacle (henceforth referred to by the
more general term “object”) of interest o with its unknown
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global state given by xo ∈ X o. This object is observed by
a robot vehicle r, the global state of which evolves with the
motion model

xrk = fr
(
xrk−1,u

r
k,w

r
k

)
, (1)

where xrk ∈ X r and urk ∈ Ur represent the state and control
input of the vehicle at time step k, respectively, and wr

k ∈
Wr is vehicle system noise. The ith sensor which localizes
the vehicle is generically described by

sizrk = sihr (xrk,
sivrk) , (2)

where sizrk and sivrk are the observed vehicle pose and the
observation noise respectively.

To detect and localize an object, the vehicle uses sensors
which each have an “observable region” determined by the
sensor’s physical capability. For example, the observable
region of an optical sensor would be its field of view (FOV).
Let the probability of detecting an object with state xo given
the robot vehicle’s state xrk and the parameters associated
with the jth sensor πsj be denoted Pd (xo|xrk;πsj ). The
observable region of the sensor for the object (j ∈ Io) can
then be expressed as

sjX o = {xo|0 < Pd (xo|xrk;πsj ) ≤ 1} .

Accordingly, the model of the jth sensor is given by

sjzok =

{
sjho (xo,xrk,

sjvok) xo ∈sj X o

ø otherwise
(3)

where sjvok represents observation noise, and ø denotes the
empty set.

B. Recursive Bayesian Estimation and Sensor Fusion

RBE is used to estimate belief about an object or a
vehicle itself in the global coordinate frame. Under RBE,
belief is represented by probability density function (PDF)s
and recursively updated through prediction and correction.
Consider a generic scenario where a sequence of self-
observations by the jth sensor on the vehicle from time
step 1 to k is denoted as si z̃r1:k ≡ {si z̃rκ|∀κ ∈ {1, ..., k}},
whereas observations on the object by the jth sensor are
given by sj z̃o1:k ≡ {sj z̃rκ|∀κ ∈ {1, ..., k}}. Note here that (̃·)
represents an instance of a corresponding variable (·). Given
the initial belief p (xr0,x

o), a sequence of observations
by sensors for self-localization sz̃r1:k ≡ {si z̃r1:k|∀i ∈ Ir}
and object localization sz̃o1:k ≡ {sj z̃o1:k|∀j ∈ Io}, and
an input ũr1:k, the vehicle and the object belief at
time step k, p (xrk,x

o|sz̃r1:k, sz̃o1:k, ũr1:k), is given by a
prediction followed by correction according to the following
formulations.

Prediction: Computes the vehicle and object belief at k from
the belief updated at k − 1 by the Chapman-Kolmogorov

equation:

p
(
xrk,x

o|sz̃r1:k−1, sz̃o1:k−1, ũr1:k
)

=
∫
X r p

(
xrk|xrk−1, ũrk

)
p
(
xrk−1,x

o|sz̃r1:k−1, sz̃o1:k−1, ũr1:k−1
)
dxrk,

(4)

where p
(
xrk|xrk−1, ũrk

)
comes from a Markovian motion

model defined by Eq. (1).
Correction: Computes the vehicle and object belief given
the predicted belief and new observations sz̃rk and sz̃ok:

p (xrk,x
o|sz̃r1:k, sz̃o1:k, ũr1:k)

=
l(xr

k,x
o|sz̃r

k,
sz̃o

k)p(x
r
k,x

o|sz̃r
1:k−1,

sz̃o
1:k−1,ũ

r
1:k)∫

Xr l(xr
k,x

o|sz̃r
k,

sz̃o
k)p(xr

k,x
o|sz̃r

1:k−1,
sz̃o

1:k−1,ũ
r
1:k)dxr

k−1

,

(5)

where l (xrk,x
o|sz̃rk, sz̃ok) represents the likelihood of xrk and

xo given observations sz̃rk and sz̃ok, which can be broken
down into the object and vehicle observation likelihoods:

l (xrk,x
o|sz̃rk, sz̃rk)

=
∏
j

∏
i

l (xo|sj z̃ok,xrk) l (xrk|si z̃rk, sj z̃ok) . (6)

The formulation of the object observation likelihood differs
depending on whether or not the object is detected. Let the
detectable region of the jth sensor for object observation,
defined as the region within which the sensor finds the object
with some confidence, be given by
sjX od = {xo|sj εo < Pd (xo|xrk,πsj ) ≤ 1} ⊂ sjX o,

where sj εo is a positive confidence threshold which deter-
mines the detection of the object. Given an observation sj z̃ok,
the object observation likelihood is then

l (xo|sj z̃ok, x̃rk) =

{
p (xo|sj z̃ok,xrk;πsj ) sj z̃ok ∈ sjX od
1− Pd (xo|xrk;πsj ) otherwise

,

(7)
where the upper and lower formulas provide likelihoods with
detection and non-detection events, respectively [13]. If the
observed object is within the detectable region, the likelihood
is generally uni-modal and often near-Gaussian PDF around
the observed object state. Otherwise, the likelihood becomes
heavily non-Gaussian.

While these formulations are comprehensive, their direct
implementation using non-Gaussian techniques such as the
grid-based method significantly suffers from computational
cost. However, it is essential that computation be fast since
detection and localization take place during vehicle opera-
tion. This motivates the use of the EKF as an online Gaussian
recursive Bayesian estimator.

III. PROPOSED OBSTACLE DETECTION AND
LOCALIZATION APPROACH

A. Overview

Figure 1 shows an overview of the proposed obstacle
detection and localization approach. The framework takes
the form of an EKF for computationally efficient localization
and deploys LiDAR, RADAR and stereo camera sensing for
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Fig. 1. Proposed obstacle detection and localization approach

robust detection of static natural obstacles. Each sensor is
represented by the abstract placeholder “Sensor A” which
generalizes sensor formulation and processing. Once an
object has been detected by a sensor, the LOC is calculated
according to a predetermined sensor-intrinsic LOC curve.
The POD is calculated by adding the LOCs of all the sensors.
After calculating the observation likelihood of each sensor
using the POD, the joint likelihood of all the sensors can be
obtained by fusing the observation likelihoods. If the sensor
does not detect an object or if the POD value is lower than
some threshold, the uniform distribution is returned as an
observation likelihood.

B. Proposed Generalized Sensor Modeling

The proposed generalized sensor model is mathematically
presented as follows. In order to use the EKF, the observation
likelihood of the jth sensor, Eq. (7), is constrained to be
Gaussian:

l (xo|sj z̃ok,xrk) =

{
N (sj z̃ok,

sjΣov
k ) sj z̃ok ∈ sjX od

U (X o) otherwise
. (8)

Here, the non-detection likelihood U (X o) is a uniform
distribution over the object space X o. If the observed ob-
ject is within the detectable region, the likelihood can be
approximated as a uni-modal Gaussian PDF whose mean is
given by the observation sj z̃ok. If not, the likelihood provides
no new information on the object.

The covariance of the observation likelihood is given by

sjΣov
k =

wj

L
sj
c

{G}
{R}T ·

{R}U (sj z̃ok) · {G}{R}T
>, (9)

where wj is a scaling factor of the jth sensor, {G}{R}T is a
transformation matrix from the global frame {G} to the robot
frame {R}, {R}U (sj z̃ok) is a unitary matrix, the elements of
which are determined by the uncertainty in range and bearing
of the jth sensor’s object observation, and L

sj
c is the LOC

of the jth sensor. The LOC is a quantity of each sensor and
is defined as

Lsjc = L
sj
c0 − f (‖sj z̃ok‖; aj) . (10)

L
sj
c = sj εo when sj z̃ok is at the border of sjX od . In the

equation, πsj ≡
[
L
sj
c0, aj

]
is the aforementioned sensor

parameter vector and f is formulated such that the LOC
decreases as the distance to the object increases. The POD
of the jth sensor, P sjd , is related to the LOC by

P
sj
d = min {Lsjc , 1} . (11)

Figure 2 illustrates the observation likelihood constructed
for each of the sensors addressed in this paper. While the
three-dimensional (3D) LiDAR and RADAR both reliably
measure range, the stereo camera can achieve high reso-
lution in bearing measurement. RADAR detects objects at
the longest ranges, but 3D LiDAR measures range more
accurately. The advantage of generalized sensor modeling
is that three very different sensors can be modeled using a
relatively low number of parameters.

Fig. 2. Observation likelihood for each sensor

C. Sensor Fusion and EKF Estimation

Because the observation likelihoods can be represented
by Gaussian distributions, the proposed approach can use
an EKF approach for RBE. Under the EKF, the mean and
covariance of the vehicle state are propagated in prediction
by

x̂rk|k−1 = fr
(
x̂rk−1|k−1, ũ

r
k

)
, (12a)

Σr
k|k−1 = ∇rfrΣr

k−1|k−1∇rf
r> + Σrw

k−1, (12b)

where ∇rfr is the Jacobian of the motion model fr (·) with
respect to the vehicle evaluated at the estimate x̂rk−1|k−1.
Correction is then given by:

x̂rk|k = x̂rk|k−1 +
∑
i

siWr
k

[
si z̃rk − sihr

(
x̂rk|k−1

)]
, (13a)

Σr
k|k = Σr

k|k−1 −Σi
k, (13b)

where
Σi
k =

∑
i

siWr
k∇rsihrΣr

k|k−1 (14)

is the covariance of the joint observation likelihood of the
sensors localizing the vehicle, and siWr

k is the Kalman gain
given by

siWr
k = ∇rsihr>

(
∇rsihrΣr

k|k−1∇r
sihr> + siΣrv

k

)−1
.

(15)
Here, ∇rsihr is the Jacobian of sihr (·) with respect to the
vehicle at x̂rk|k−1. The proposed approach effectively uses
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the estimated x̂rk|k and Σr
k|k to represent vehicle belief for

subsequent object localization.
With respect to object belief, the prediction stage is

eliminated since the object is static. Instead, only correction
(5) is used to update object belief using the EKF:

x̂ok|k = x̂ok−1|k−1+∑
j

sjWo
k

[
sj z̃ok − sjho

(
x̂ok−1|k−1, x̂

r
k|k

)]
, (16a)

Σo′

k|k = Σo
k−1|k−1 −Σj

k, (16b)

where the covariance of the joint observation likelihood of
the sensors localizing the object is

Σj
k =

∑
j

sjWo
k∇osjhoΣo

k−1|k−1, (17)

and the Kalman gain sjWo
k is given by

sjWo
k = Σo

k−1|k−1∇o
sjho>

(
∇osjhoΣo

k−1|k−1∇o
sjho> + sjΣov

k

)−1
(18)

Again, ∇osjho is the Jacobian of sjho (·) with respect to
the object at x̂ok|k−1. Finally, the covariance of the object is
updated by incorporating the uncertainty of the vehicle:

Σo
k|k = Σo′

k|k + Σr
k|k. (19)

The Gaussian PDF N
(
x̂ok|k,Σ

o
k|k

)
defined by the mean and

covariance coming from the EKF represents updated object
belief in the global coordinate frame.

IV. EXPERIMENTAL VALIDATION

Since its strength is in applicability to complex scenarios,
it is essential to test and validate the proposed approach in a
practical context. The proposed approach was applied to the
detection of rocks at a quarry in Blacksburg, Virginia, USA.
Figure 3 shows the vehicle and rocks used for evaluation.
The test vehicle, a Ford Escape, was equipped with a 3D
LiDAR sensor, a RADAR sensor and a stereo camera. The
two rocks used for testing were native to the quarry envi-
ronment. One had a color which varied significantly from its
environment, whereas the other’s brown color was similar to
the environment. Both had a height of approximately 25 cm.
The brown rock on the right, which is more difficult to detect,
was used for the actual validation and was initially located
approximately 60 m from the test vehicle. The vehicle was
driven towards the rock at a constant speed.

(a) Test vehicle (b) Obstacles

Fig. 3. Experimental infrastructure

Table I lists major parameters used in the validations;
Figure 4 shows the LOCs as a function of the distance
from the vehicle to the rock obstacle. Note that, in Table I,
d = ‖sz̃ok‖. The covariances used to create the observation
likelihoods of each sensor was specified by capturing their
physical characteristics before testing. Standard edge detec-
tion, color detection, and clustering algorithms were used
for detection by the LiDAR, stereo camera and RADAR
sensors, respectively. It is also important to note here that
the 3D LiDAR has limited capability in obstacle detection as
illustrated in Figure 5. Due to the low resolution in horizontal
scanning, non-detection events occur when the obstacle is
located between scans.

TABLE I
IMPORTANT PARAMETERS OF THE PROPOSED APPROACH

Parameter Value
FOV of RADAR [deg] 20 (Long-range), 60 (Mid-range)
FOV of LiDAR [deg] 360
FOV of Stereovision 50

Observation covariance
(RADAR) [m, m; m, m] [0.1d, 0.0; 0, 0.004d]

Observation covariance
(LiDAR) [m, m; m, m] [0.1d, 0.0; 0, 0.0003d]

Observation covariance
(Stereovision) [m, m; m, m] [1.0d, 0.0; 0, 0.0001d]

Detection by LiDAR Edge detection
Detection by Stereovision Color detection

Detection by RADAR Clustering

Fig. 4. LOC for each sensor and total

Fig. 5. Occurrence of no detection in 3D LiDAR

2020 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR)
November 4-6, Abu Dhabi, UAE

286

Authorized licensed use limited to: West Point Military Academy. Downloaded on January 15,2021 at 16:59:11 UTC from IEEE Xplore.  Restrictions apply. 



(a) Distance traveled = 22 m (Obstacle detected by 3D LiDAR only)

(b) Distance traveled = 30 m (Obstacle detected by stereo camera only)

(c) Distance traveled = 58 m (Obstacle detected by LiDAR, stereo
camera and RADAR)

Fig. 6. LiDAR/camera/RADAR images and observation likelihoods

Figure 6 shows a set of LiDAR/camera/RADAR images,
the observation likelihood of each sensor, and the joint
observation likelihood at different traveled distances. The
solid ellipse represents the covariance of the observation
likelihood, which is scaled to understand the change in
covariance visually. No plot of the observation likelihood
means that the obstacle was not detected by the sensor. In
Figure 6(a), the obstacle is detected only by the 3D LiDAR
as stereo-vision detection is unreliable since the color of the
background is similar to that of the rock. The covariance
shows less uncertainty in depth. This is because the 3D
LiDAR is accurate in depth while the resolution is low.
Figure 6(b), on the other hand, shows detection by the
stereo camera only. While the obstacle is even closer, the
3D LiDAR is unable to detect the obstacle since no lines are
scanned in the range between 20 m and 60 m. The covariance

is thus oriented to show certainty in bearing. All sensors have
detected the obstacle when the vehicle is approximately 12
m away from the obstacle as shown in Figure 6(c). The joint
observation likelihood is seen to be highly certain due to
the fusion of observation likelihoods created by sensors with
different strengths.

Figure 7 shows a quantitative result of the proposed
framework for the previously described test. Figure 7(a)
shows the transition of the LOC by the LiDAR and the
camera as well as the total LOC. The LOCs are initially
zero since the obstacle is outside the detectable regions of
both the sensors. The LOCs then increase as the vehicle
approaches the obstacle. However, it is also clear that the
LOC often becomes zero. This happens when detection does
not occur. The LiDAR sensor can detect the obstacle well but
only when a beam scans it. The detection capability of the
camera depends on the obstacle’s appearance in the image
among many other factors. This instability is unavoidable
in detection, emphasizing the importance of RBE, which
constructs and updates belief based on past information.

Figure 7(b) shows the Kullback-Leibler (KL) divergence
of the observation likelihood of each LiDAR and camera.
Both the KL divergences gradually increase as the vehicle
approaches the obstacle. The certainty of the observation
clearly gets higher in proportion to the LOC.

(a) LOCs vs. distance traveled

(b) KL divergence vs. distance traveled

Fig. 7. Quantitative result of obstacle observation

Figure 8 shows the result of the proposed localization
approach where the blue and the red ellipses represent
the scaled covariances of the vehicle and obstacle belief
functions respectively. Figure 8(a) shows the initial belief
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functions that have been constructed from prior knowledge
whereas belief after the first detection are shown in Fig-
ure 8(b). It is clear that the corrected obstacle covariance is
largely influenced by the LiDAR observation since the initial
belief was so uncertain. This underscores the effectiveness
of the proposed obstacle observation technique since it gives
a guess on the obstacle location immediately after the first
detection even though the LOC of the LiDAR sensor is still
low. The camera detects the obstacle soon after, as shown
in Figure 8(c), and thus estimation improves by means of
sensor fusion. The proposed approach keeps reducing the
uncertainty of both the vehicle and the obstacle as shown in
Figure 8(d), until the vehicle reaches the obstacle.

(a) Distance traveled = 0 m (Initial
belief)

(b) Distance traveled = 22 m (De-
tected by LiDAR only)

(c) Distance traveled = 30 m (De-
tected by stereo camera only)

(d) Distance traveled = 58 m (De-
tected by LiDAR and stereo camera)

Fig. 8. Transition of observation likelihoods of vehicle and obstacle

Figure 9(a) shows the transition of the KL divergences of
the vehicle and obstacle belief. The KL divergence of the
vehicle belief fluctuates but is steady since only one Global
Positioning System (GPS) sensor is used for self-localization.
This GPS sensor has constant variance regardless of the
measured vehicle position. The KL divergence of the obstacle
belief keeps increasing regardless of whether or not it is
detected by the sensors because belief is constantly updated
by RBE. The effect of the sensor fusion is clearly seen, as the
KL divergence of the obstacle belief increases dramatically
after 12 and 38 meters have been traveled. This is because
LiDAR detected the obstacle at 12 m for the first time, and
both the LiDAR and stereo camera detected the obstacle
for the first time. The estimation errors relative to ground
truth are shown in Figure 9(b); from this it is evident
that the vehicle is localized to within one meter, while
obstacle localization error expectedly decreases to zero over
the distance traveled.

(a) KL divergence

(b) Localization errors

Fig. 9. KL divergence and errors of vehicle and obstacle beliefs vs. distance
travelled

V. CONCLUSIONS

This paper has presented an approach that implements a
sensor-fusion-augmented EKF framework to improve vehic-
ular obstacle detection and localization in unpaved road en-
vironments. The key contributions of the proposed approach
include probabilistic modeling, fusion, and deployment of
RADAR, LiDAR and stereo-camera sensors for detection
of static natural obstacles and the formulation of an EKF
based framework for their localization. Results with a test
vehicle show the successful detection and localization of a
static natural obstacle on an unpaved road. It is demonstrated
that KL divergence formulated for obstacle belief continually
increases as different sensor observations are consecutively
added. Furthermore, as expected, certainty and accuracy
of obstacle belief increases as the sensor-equipped vehicle
approaches it. This framework proves to be successful in a
highly unstructured domain where automation is difficult and
existing approaches are generally insufficient.

The paper has focused on detecting and localizing a static
natural obstacle on an unpaved road and much work is still
left open. Ongoing topics that were not covered include the
detection of multiple and/or dynamic natural obstacles, de-
tailed obstacle detection algorithms, and vehicle localization
using multiple sensors. These topics will be published in
the future through conferences and journal special issues
associated with such developing technologies.
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