3,050 research outputs found

    Jet directions in Seyfert galaxies: B and I imaging data

    Full text link
    We present the results of broad-band B and I imaging observations for a sample of 88 Seyfert galaxies (29 Seyfert 1's and 59 Seyfert 2's), selected from a mostly isotropic property, the flux at 60ÎĽ\mum. We also present the B and I imaging results for an additional sample of 20 Seyfert galaxies (7 Seyfert 1's and 13 Seyfert 2's), selected from the literature and known to have extended radio emission. The I band images are fitted with ellipses to determine the position angle and ellipticity of the host galaxy major axis. This information will be used in a future paper, combined with information from radio observations, to study the orientation of radio jets relative to the plane of their host galaxies (Kinney et al. 2000). Here we present surface brightness profiles and magnitudes in the B and I bands, as well as mean ellipticities and major axis position angles.Comment: To appear in The Astrophysical Journal Supplement Series, June 2000. 48 pages, 7 tables, 19 gif and 11 postscript figures. Better quality figures can be obtained with the autho

    Numerical solutions of the three-dimensional magnetohydrodynamic alpha-model

    Get PDF
    We present direct numerical simulations and alpha-model simulations of four familiar three-dimensional magnetohydrodynamic (MHD) turbulence effects: selective decay, dynamic alignment, inverse cascade of magnetic helicity, and the helical dynamo effect. The MHD alpha-model is shown to capture the long-wavelength spectra in all these problems, allowing for a significant reduction of computer time and memory at the same kinetic and magnetic Reynolds numbers. In the helical dynamo, not only does the alpha-model correctly reproduce the growth rate of magnetic energy during the kinematic regime, but it also captures the nonlinear saturation level and the late generation of a large scale magnetic field by the helical turbulence.Comment: 12 pages, 19 figure

    Boundary Effective Field Theory and Trans-Planckian Perturbations: Astrophysical Implications

    Full text link
    We contrast two approaches to calculating trans-Planckian corrections to the inflationary perturbation spectrum: the New Physics Hypersurface [NPH] model, in which modes are normalized when their physical wavelength first exceeds a critical value, and the Boundary Effective Field Theory [BEFT] approach, where the initial conditions for all modes are set at the same time, and modified by higher dimensional operators enumerated via an effective field theory calculation. We show that these two approaches -- as currently implemented -- lead to radically different expectations for the trans-Planckian corrections to the CMB and emphasize that in the BEFT formalism we expect the perturbation spectrum to be dominated by quantum gravity corrections for all scales shorter than some critical value. Conversely, in the NPH case the quantum effects only dominate the longest modes that are typically much larger than the present horizon size. Furthermore, the onset of the breakdown in the standard inflationary perturbation calculation predicted by the BEFT formalism is likely to be associated with a feature in the perturbation spectrum, and we discuss the observational signatures of this feature in both CMB and large scale structure observations. Finally, we discuss possible modifications to both calculational frameworks that would resolve the contradictions identified here.Comment: Reworded commentary, reference added (v2) References added (v3

    Direct measurement of the jet geometry in Seyfert galaxies

    Get PDF
    We demonstrate that, by combining optical, radio and X-ray observations of a Seyfert, it is possible to provide a direct measurement of the angle β\beta between the direction of the radio jet and the normal to the plane of the spiral host galaxy. To do so, we make the assumptions that the inner radio jet is perpendicular to the X-ray observed inner accretion disk, and that the observed jet (or the stronger component, if the jet is two-sided) is physically closer to Earth than the plane of the galaxy. We draw attention to the possibility of measurement producing a result which is not self-consistent, in which case for that galaxy, one of the assumptions must fail.Comment: 11 pages, 1 figure, accepted for publication in The Astrophysical Journal Letter

    A Hubble Space Telescope Survey of Extended [OIII]5007A Emission in a Far-Infrared Selected Sample of Seyfert Galaxies: Results

    Full text link
    We present the results of a Hubble Space Telescope (HST) survey of extended [OIII] emission in a sample of 60 nearby Seyfert galaxies (22 Seyfert 1's and 38 Seyfert 2's), selected by mostly isotropic properties. The comparison between the semi major axis size of their [OIII] emitting regions (R_Maj) shows that Seyfert 1's and Seyfert 2's have similar distributions, which seems to contradict Unified Model predictions. We discuss possible ways to explain this result, which could be due either to observational limitations or the models used for the comparison with our data. We show that Seyfert 1 Narrow Line Regions (NLR's) are more circular and concentrated than Seyfert 2's, which can be attributed to foreshortening in the former. We find a good correlation between the NLR size and luminosity, following the relation R_Maj propto L([OIII])^0.33, which is flatter than a previous one found for QSO's and Seyfert 2's. We discuss possible reasons for the different results, and their implications to photoionization models. We confirm previous results which show that the [OIII] and radio emission are well aligned, and also find no correlation between the orientation of the extended [OIII] emission and the host galaxy major axis. This agrees with results showing that the torus axis and radio jet are not aligned with the host galaxy rotation axis, indicating that the orientation of the gas in the torus, and not the spin of the black hole, determine the orientation of the accretion disk, and consequently the orientation of the radio jet.Comment: 17 pages including 12 figures, to appear in Ap

    Super-Kamiokande 0.07 eV Neutrinos in Cosmology: Hot Dark Matter and the Highest Energy Cosmic Rays

    Get PDF
    Relic neutrinos with mass in the range indicated by Super-Kamiokande results if neutrino masses are hierarchial (about 0.07 eV) are many times deemed too light to be cosmologically relevant. Here we remark that these neutrinos may significantly contribute to the dark matter of the Universe (with a large lepton asymmetry LL) and that their existence might be revealed by the spectrum of ultra high energy cosmic rays (maybe even in the absence of a large LL).Comment: Talk given at the ``4th International Symposium on Sources and Detection of Dark Matter in the Universe", February 23-25, 2000, Marina del Rey, CA (to appear in its proceedings) and at the ``Cosmic Genesis and Fundamental Physics" workshop, October 28-30, 1999, Sonoma State University, Santa Rosa, CA. (8 p. 1 fig.

    Share2Quit: Web-Based Peer-Driven Referrals for Smoking Cessation

    Get PDF
    BACKGROUND: Smoking is the number one preventable cause of death in the United States. Effective Web-assisted tobacco interventions are often underutilized and require new and innovative engagement approaches. Web-based peer-driven chain referrals successfully used outside health care have the potential for increasing the reach of Internet interventions. OBJECTIVE: The objective of our study was to describe the protocol for the development and testing of proactive Web-based chain-referral tools for increasing the access to Decide2Quit.org, a Web-assisted tobacco intervention system. METHODS: We will build and refine proactive chain-referral tools, including email and Facebook referrals. In addition, we will implement respondent-driven sampling (RDS), a controlled chain-referral sampling technique designed to remove inherent biases in chain referrals and obtain a representative sample. We will begin our chain referrals with an initial recruitment of former and current smokers as seeds (initial participants) who will be trained to refer current smokers from their social network using the developed tools. In turn, these newly referred smokers will also be provided the tools to refer other smokers from their social networks. We will model predictors of referral success using sample weights from the RDS to estimate the success of the system in the targeted population. RESULTS: This protocol describes the evaluation of proactive Web-based chain-referral tools, which can be used in tobacco interventions to increase the access to hard-to-reach populations, for promoting smoking cessation. CONCLUSIONS: Share2Quit represents an innovative advancement by capitalizing on naturally occurring technology trends to recruit smokers to Web-assisted tobacco interventions

    Sharing Social Network Data: Differentially Private Estimation of Exponential-Family Random Graph Models

    Get PDF
    Motivated by a real-life problem of sharing social network data that contain sensitive personal information, we propose a novel approach to release and analyze synthetic graphs in order to protect privacy of individual relationships captured by the social network while maintaining the validity of statistical results. A case study using a version of the Enron e-mail corpus dataset demonstrates the application and usefulness of the proposed techniques in solving the challenging problem of maintaining privacy \emph{and} supporting open access to network data to ensure reproducibility of existing studies and discovering new scientific insights that can be obtained by analyzing such data. We use a simple yet effective randomized response mechanism to generate synthetic networks under ϵ\epsilon-edge differential privacy, and then use likelihood based inference for missing data and Markov chain Monte Carlo techniques to fit exponential-family random graph models to the generated synthetic networks.Comment: Updated, 39 page

    The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence

    Full text link
    A numerical model of isotropic homogeneous turbulence with helical forcing is investigated. The resulting flow, which is essentially the prototype of the alpha^2 dynamo of mean-field dynamo theory, produces strong dynamo action with an additional large scale field on the scale of the box (at wavenumber k=1; forcing is at k=5). This large scale field is nearly force-free and exceeds the equipartition value. As the magnetic Reynolds number R_m increases, the saturation field strength and the growth rate of the dynamo increase. However, the time it takes to built up the large scale field from equipartition to its final super-equipartition value increases with magnetic Reynolds number. The large scale field generation can be identified as being due to nonlocal interactions originating from the forcing scale, which is characteristic of the alpha-effect. Both alpha and turbulent magnetic diffusivity eta_t are determined simultaneously using numerical experiments where the mean-field is modified artificially. Both quantities are quenched in a R_m-dependent fashion. The evolution of the energy of the mean field matches that predicted by an alpha^2 dynamo model with similar alpha and eta_t quenchings. For this model an analytic solution is given which matches the results of the simulations. The simulations are numerically robust in that the shape of the spectrum at large scales is unchanged when changing the resolution from 30^3 to 120^3 meshpoints, or when increasing the magnetic Prandtl number (viscosity/magnetic diffusivity) from 1 to 100. Increasing the forcing wavenumber to 30 (i.e. increasing the scale separation) makes the inverse cascade effect more pronounced, although it remains otherwise qualitatively unchanged.Comment: 21 pages, 26 figures, ApJ (accepted
    • …
    corecore