754 research outputs found

    Loss of idealism or realistic optimism? A cross‐sectional analysis of dental hygiene students’ and registered dental hygienists’ professional identity perceptions

    Full text link
    ObjectivesThe dental hygiene profession in the U.S. is in the process of establishing a direct access model of care and contributing to the creation of the profession of a dental therapist. The objectives were to analyse the professional role perceptions of dental hygiene students and registered dental hygienists in these times of change. Specifically, it was explored whether dental hygiene students’ current professional identities differ (i) from their expected future identities, and (ii) from dental hygienists’ current and (iii) past identities.MethodsSurvey data were collected from 215 dental hygiene students concerning their present and future role perceptions, and from 352 registered dental hygienists concerning their present and past professional identity perceptions.ResultsStudents’ future professional identity perceptions were even more positive than their very positive current perceptions of their professional role components. Students’ current perceptions of professional pride, professional ambition, work ethic and patient relations were more positive than dental hygienists’ current perceptions of these professional role components. A comparison of students’ current perceptions with dental hygienists’ current and retrospective descriptions showed that students were more positive than dental hygienists in each case.ConclusionsThe fact that dental hygienists had less positive role perceptions than dental hygiene students might lead to the conclusion that a loss of idealism occurs over the course of a professional lifespan. However, dental hygienists actually improved their role perceptions over time and students’ future descriptions were more positive than their current descriptions, supporting the interpretation that realistic optimism dominates professional role perceptions in these times of change.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141357/1/idh12287_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141357/2/idh12287.pd

    Supersymmetric States in Large N Chern-Simons-Matter Theories

    Full text link
    In this paper we study the spectrum of BPS operators/states in N=2 superconformal U(N) Chern-Simons-matter theories with adjoint chiral matter fields, with and without superpotential. The superconformal indices and conjectures on the full supersymmetric spectrum of the theories in the large N limit with up to two adjoint matter fields are presented. Our results suggest that some of these theories may have supergravity duals at strong coupling, while some others may be dual to higher spin theories of gravity at strong coupling. For the N=2 theory with no superpotential, we study the renormalization of R-charge at finite 't Hooft coupling using "Z-minimization". A particularly intriguing result is found in the case of one adjoint matter.Comment: 53 pages, 18 figures. v2: improved numerics, additional comments adde

    The Cosmic Microwave Background and Particle Physics

    Get PDF
    In forthcoming years, connections between cosmology and particle physics will be made increasingly important with the advent of a new generation of cosmic microwave background (CMB) experiments. Here, we review a number of these links. Our primary focus is on new CMB tests of inflation. We explain how the inflationary predictions for the geometry of the Universe and primordial density perturbations will be tested by CMB temperature fluctuations, and how the gravitational waves predicted by inflation can be pursued with the CMB polarization. The CMB signatures of topological defects and primordial magnetic fields from cosmological phase transitions are also discussed. Furthermore, we review current and future CMB constraints on various types of dark matter (e.g. massive neutrinos, weakly interacting massive particles, axions, vacuum energy), decaying particles, the baryon asymmetry of the Universe, ultra-high-energy cosmic rays, exotic cosmological topologies, and other new physics.Comment: 43 pages. To appear in Annual Reviews of Nuclear and Particle Scienc

    From counting to construction of BPS states in N=4 SYM

    Full text link
    We describe a universal element in the group algebra of symmetric groups, whose characters provides the counting of quarter and eighth BPS states at weak coupling in N=4 SYM, refined according to representations of the global symmetry group. A related projector acting on the Hilbert space of the free theory is used to construct the matrix of two-point functions of the states annihilated by the one-loop dilatation operator, at finite N or in the large N limit. The matrix is given simply in terms of Clebsch-Gordan coefficients of symmetric groups and dimensions of U(N) representations. It is expected, by non-renormalization theorems, to contain observables at strong coupling. Using the stringy exclusion principle, we interpret a class of its eigenvalues and eigenvectors in terms of giant gravitons. We also give a formula for the action of the one-loop dilatation operator on the orthogonal basis of the free theory, which is manifestly covariant under the global symmetry.Comment: 41 pages + Appendices, 4 figures; v2 - refs and acknowledgments adde

    State-space Manifold and Rotating Black Holes

    Full text link
    We study a class of fluctuating higher dimensional black hole configurations obtained in string theory/ MM-theory compactifications. We explore the intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the Hessian of the coarse graining entropy, defined over an ensemble of brane microstates. It has been shown that the state-space geometry spanned by the set of invariant parameters is non-degenerate, regular and has a negative scalar curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes, supersymmetric AdS5AdS_5 black holes, D1D_1-D5D_5 configurations and the associated BMPV black holes. Interestingly, these solutions demonstrate that the principal components of the state-space metric tensor admit a positive definite form, while the off diagonal components do not. Furthermore, the ratio of diagonal components weakens relatively faster than the off diagonal components, and thus they swiftly come into an equilibrium statistical configuration. Novel aspects of the scaling property suggest that the brane-brane statistical pair correlation functions divulge an asymmetric nature, in comparison with the others. This approach indicates that all above configurations are effectively attractive and stable, on an arbitrary hyper-surface of the state-space manifolds. It is nevertheless noticed that there exists an intriguing relationship between non-ideal inter-brane statistical interactions and phase transitions. The ramifications thus described are consistent with the existing picture of the microscopic CFTs. We conclude with an extended discussion of the implications of this work for the physics of black holes in string theory.Comment: 44 pages, Keywords: Rotating Black Holes; State-space Geometry; Statistical Configurations, String Theory, M-Theory. PACS numbers: 04.70.-s Physics of black holes; 04.70.Bw Classical black holes; 04.70.Dy Quantum aspects of black holes, evaporation, thermodynamics; 04.50.Gh Higher-dimensional black holes, black strings, and related objects. Edited the bibliograph

    Localization of N=4 Superconformal Field Theory on S^1 x S^3 and Index

    Full text link
    We provide the geometrical meaning of the N=4{\cal N}=4 superconformal index. With this interpretation, the N=4{\cal N}=4 superconformal index can be realized as the partition function on a Scherk-Schwarz deformed background. We apply the localization method in TQFT to compute the deformed partition function since the deformed action can be written as a δϾ\delta_\epsilon-exact form. The critical points of the deformed action turn out to be the space of flat connections which are, in fact, zero modes of the gauge field. The one-loop evaluation over the space of flat connections reduces to the matrix integral by which the N=4{\cal N}=4 superconformal index is expressed.Comment: 42+1 pages, 2 figures, JHEP style: v1.2.3 minor corrections, v4 major revision, conclusions essentially unchanged, v5 published versio

    Pulmonary arterial medial smooth muscle thickness in sudden infant death syndrome: an analysis of subsets of 73 cases

    Get PDF
    Previous studies addressing pulmonary artery morphology have compared cases of sudden infant death syndrome (SIDS) to controls but none have compared demographic profiles, exposure to potentially hypoxic risk factors and other pathologic variables in SIDS cases grouped according to pulmonary artery medial smooth muscle thickness. Aims: To compare the relative medial thickness (RMT) in alveolar wall arteries (AW) in SIDS cases with that in age-matched controls and 2. Compare demographic, clinical, and pathologic characteristics among three subsets of SIDS cases based upon alveolar wall (AW) RMT. Retrospective morphometric planimetry of all muscularized arteries in standardized right apical lung sections in 73 SIDS cases divided into three groups based on increasing AW RMT as well as 19 controls age-matched to 19 of the SIDS cases. SIDS and age-matched control cases did not differ with respect to AW RMT or other demographic variables. The SIDS group with the thickest AW RMT had significantly more males and premature birth than the other groups, but the groups did not differ for known clinical risk factors that would potentially expose them to hypoxia. Pathologic variables, including pulmonary inflammation, gastric aspiration, intra-alveolar siderophages, cardiac valve circumferences, and heart and liver weights, were not different between groups. Age was not significantly correlated with RMT of alveolar wall and pre-acinar arteries but was significant at p = .018 for small intra-acinar arteries. The groups were different for RMT of small pre-acinar and intra-acinar arteries, which increased with increasing AW RMT. Statistical differences should not necessarily be equated with clinical importance, however future research incorporating more quantified historical data is recommended

    Fermionic Coset, Critical Level W^(2)_4-Algebra and Higher Spins

    Full text link
    The fermionic coset is a limit of the pure spinor formulation of the AdS5xS5 sigma model as well as a limit of a nonlinear topological A-model, introduced by Berkovits. We study the latter, especially its symmetries, and map them to higher spin algebras. We show the following. The linear A-model possesses affine \AKMSA{pgl}{4}{4}_0 symmetry at critical level and its \AKMSA{psl}{4}{4}_0 current-current perturbation is the nonlinear model. We find that the perturbation preserves W4(2)\mathcal{W}^{(2)}_4-algebra symmetry at critical level. There is a topological algebra associated to \AKMSA{pgl}{4}{4}_0 with the properties that the perturbation is BRST-exact. Further, the BRST-cohomology contains world-sheet supersymmetric symplectic fermions and the non-trivial generators of the W4(2)\mathcal{W}^{(2)}_4-algebra. The Zhu functor maps the linear model to a higher spin theory. We analyze its \SLSA{psl}{4}{4} action and find finite dimensional short multiplets.Comment: 25 page

    Surprisingly Simple Spectra

    Full text link
    The large N limit of the anomalous dimensions of operators in N=4{\cal N}=4 super Yang-Mills theory described by restricted Schur polynomials, are studied. We focus on operators labeled by Young diagrams that have two columns (both long) so that the classical dimension of these operators is O(N). At large N these two column operators mix with each other but are decoupled from operators with n≠2n\ne 2 columns. The planar approximation does not capture the large N dynamics. For operators built with 2, 3 or 4 impurities the dilatation operator is explicitly evaluated. In all three cases, in a certain limit, the dilatation operator is a lattice version of a second derivative, with the lattice emerging from the Young diagram itself. The one loop dilatation operator is diagonalized numerically. All eigenvalues are an integer multiple of 8gYM28g_{YM}^2 and there are interesting degeneracies in the spectrum. The spectrum we obtain for the one loop anomalous dimension operator is reproduced by a collection of harmonic oscillators. This equivalence to harmonic oscillators generalizes giant graviton results known for the BPS sector and further implies that the Hamiltonian defined by the one loop large NN dilatation operator is integrable. This is an example of an integrable dilatation operator, obtained by summing both planar and non-planar diagrams.Comment: 34 page
    • …
    corecore