4,606 research outputs found
Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves
Despite the central role that antibodies play in the adaptive immune system and in biotechnology, much remains unknown about the quantitative relationship between an antibody's amino acid sequence and its antigen binding affinity. Here we describe a new experimental approach, called Tite-Seq, that is capable of measuring binding titration curves and corresponding affinities for thousands of variant antibodies in parallel. The measurement of titration curves eliminates the confounding effects of antibody expression and stability that arise in standard deep mutational scanning assays. We demonstrate Tite-Seq on the CDR1H and CDR3H regions of a well-studied scFv antibody. Our data shed light on the structural basis for antigen binding affinity and suggests a role for secondary CDR loops in establishing antibody stability. Tite-Seq fills a large gap in the ability to measure critical aspects of the adaptive immune system, and can be readily used for studying sequence-affinity landscapes in other protein systems
New Solutions of the Inflationary Flow Equations
The inflationary flow equations are a frequently used method of surveying the
space of inflationary models. In these applications the infinite hierarchy of
differential equations is truncated in a way which has been shown to be
equivalent to restricting the set of models considered to those characterized
by polynomial inflaton potentials. This paper explores a different method of
solving the flow equations, which does not truncate the hierarchy and in
consequence covers a much wider class of models while retaining the practical
usability of the standard approach.Comment: References added, and a couple of comment
A Hamilton-Jacobi approach to non-slow-roll inflation
I describe a general approach to characterizing cosmological inflation
outside the standard slow-roll approximation, based on the Hamilton-Jacobi
formulation of scalar field dynamics. The basic idea is to view the equation of
state of the scalar field matter as the fundamental dynamical variable, as
opposed to the field value or the expansion rate. I discuss how to formulate
the equations of motion for scalar and tensor fluctuations in situations where
the assumption of slow roll is not valid. I apply the general results to the
simple case of inflation from an ``inverted'' polynomial potential, and to the
more complicated case of hybrid inflation.Comment: 21 pages, RevTeX (minor revisions to match published version
The Influence of Neuromusculoskeletal Model Calibration Method on Predicted Knee Contact Forces during Walking
This study explored the influence of three model calibration methods on predicted knee contact and leg muscle forces during walking. Static optimization was used to calculate muscle activations for all three methods. Approach A used muscle-tendon model parameter values (i.e., optimal muscle fiber lengths and tendon slack lengths) taken directly from literature. Approach B used a simple algorithm to calibrate muscle-tendon model parameter values such that each muscle operated within the ascending region of its normalized force-length curve. Approach C used a novel two-level optimization procedure to calibrate muscle-tendon, moment arm, and neural control model parameter values while simultaneously predicting muscle activations
Synergy-Based Two-Level Optimization for Predicting Knee Contact Forces during Walking
Musculoskeletal models and optimization methods are combined to calculate muscle forces. Some model parameters cannot be experimentally measured due to the invasiveness, such as the muscle moment arms or the muscle and tendon lengths. Moreover, other parameters used in the optimization, such as the muscle synergy components, can be also unknown. The estimation of all these parameters needs to be validated to obtain physiologically consistent results. In this study, a two-step optimization problem was formulated to predict both muscle and knee contact forces of a subject wearing an instrumented knee prosthesis. In the outer level, muscle parameters were calibrated, whereas in the inner level, muscle activations were predicted. Two approaches are presented. In Approach A, contact forces were used when calibrating the parameters, whereas in Approach B, no contact force information was used as input. The optimization formulation is validated comparing the model and the experimental knee contact forces. The goal was to evaluate whether we can predict the contact forces when in-vivo contact forces are not available
- …