18 research outputs found

    Host Species Restriction of Middle East Respiratory Syndrome Coronavirus through Its Receptor, Dipeptidyl Peptidase 4

    Get PDF
    Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012. Recently, the MERS-CoV receptor dipeptidyl peptidase 4 (DPP4) was identified and the specific interaction of the receptor-binding domain (RBD) of MERS-CoV spike protein and DPP4 was determined by crystallography. Animal studies identified rhesus macaques but not hamsters, ferrets, or mice to be susceptible for MERS-CoV. Here, we investigated the role of DPP4 in this observed species tropism. Cell lines of human and nonhuman primate origin were permissive of MERS-CoV, whereas hamster, ferret, or mouse cell lines were not, despite the presence of DPP4. Expression of human DPP4 in nonsusceptible BHK and ferret cells enabled MERS-CoV replication, whereas expression of hamster or ferret DPP4 did not. Modeling the binding energies of MERS-CoV spike protein RBD to DPP4 of human (susceptible) or hamster (nonsusceptible) identified five amino acid residues involved in the DPP4-RBD interaction. Expression of hamster DPP4 containing the five human DPP4 amino acids rendered BHK cells susceptible to MERS-CoV, whereas expression of human DPP4 containing the five hamster DPP4 amino acids did not. Using the same approach, the potential of MERS-CoV to utilize the DPP4s of common Middle Eastern livestock was investigated. Modeling of the DPP4 and MERS-CoV RBD interaction predicted the ability of MERS-CoV to bind the DPP4s of camel, goat, cow, and sheep. Expression of the DPP4s of these species on BHK cells supported MERS-CoV replication. This suggests, together with the abundant DPP4 presence in the respiratory tract, that these species might be able to function as a MERS-CoV intermediate reservoir

    Natural Burkholderia mallei Infection in Dromedary, Bahrain

    Get PDF
    We confirm a natural infection of dromedaries with glanders. Multilocus variable number tandem repeat analysis of a Burkholderia mallei strain isolated from a diseased dromedary in Bahrain revealed close genetic proximity to strain Dubai 7, which caused an outbreak of glanders in horses in the United Arab Emirates in 2004

    Serum Amyloid A as an Indicator of Health Status in Falcons

    No full text

    Analysis of camelid IgG for antivenom development: Serological responses of venom-immunised camels to prepare either monospecific or polyspecific antivenoms for West Africa.

    No full text
    Snake envenoming is a significant cause of mortality and morbidity in sub-Saharan Africa. The only effective treatment, antivenom, has been in short supply since the 1990s. Whilst the humanitarian response by some antivenom producers has significantly improved the situation, strategies to ensure the long term stability of antivenom supply are still necessary. We are investigating whether the potential safety and logistic advantages of camel IgG antivenom can be exploited to improve antivenom provision in many countries where snakebite is endemic. This study assessed the IgG titre, specificity and avidity of camels immunised with either individual venom or a mixture of venoms from the three most medically important snakes of West Africa, the saw-scale viper (Echis ocellatus), the puff adder (Bitis arietans) and the spitting cobra (Naja nigricollis). Seven of the eight immunised camels generated IgG titres and avidities comparable to, or exceeding, that of commercial equine and ovine antivenoms that are highly effective in envenomed patients. In this, the first of a series of reports on the potential utility of camelid IgG antivenom, we describe an immunisation protocol that induced potent, sustained serological response of very high antibody avidity. These attributes suggest, from an immunological perspective, that camel IgG antivenoms should be as efficacious as current equine and ovine antivenoms

    Analysis of camelid antibodies for antivenom development: Neutralisation of venom-induced pathology.

    No full text
    Camelid IgG has been reported to be less immunogenic, less able to activate the complement cascade and more thermostable than IgG from other mammals, and has the ability to bind antigens that are unreactive with other mammalian IgGs. We are investigating whether these attributes of camelid IgG translate into antivenom with immunological and venom-neutralising efficacy advantages over conventional equine and ovine antivenoms. The objective of this study was to determine the preclinical venom-neutralising effectiveness of IgG from camels immunised with venoms, individually or in combination, of the saw-scaled viper, Echis ocellatus, the puff adder, Bitis arietans and the spitting cobra, Naja nigricollis - the most medically-important snake species in West Africa. Neutralisation of the pathological effects of venoms from E. ocellatus, B. arietans and N. nigricollis by IgG from the venom-immunised camels, or commercial antivenom, was compared using assays of venom lethality (ED(50)), haemorrhage (MHD) and coagulopathy (MCD). The E. ocellatus venom ED(50), MHD and MCD results of the E. ocellatus monospecific camel IgG antivenom were broadly equivalent to comparable ovine (EchiTAbG, MicroPharm Ltd, Wales) and equine (SAIMR Echis, South African Vaccine Producer, South Africa) antivenoms, although the equine antivenom required half the amount of IgG. The B. arietans monospecific camel IgG neutralised the lethal effects of B. arietans venom at one fourth the concentration of the SAIMR polyspecific antivenom (a monospecific B. arietans antivenom is not available). The N. nigricollis camel IgG antivenom was ineffective (at the maximum permitted dose, 100 mul) against the lethal effects of N. nigricollis venom. All the equine polyspecific antivenoms required more than 100 microl to be effective against this venom. The polyspecific camel IgG antivenom, prepared from five camels, was effective against the venom-induced effects of E. ocellatus but not against that of B. arietans and N. nigricollis venoms. No direct correlation was evident between either camel IgG relative avidity or titre and the effectiveness of venom neutralisation in preclinical assays

    Analysis of camelid IgG for antivenom development: Immunoreactivity and preclinical neutralisation of venom-induced pathology by IgG subclasses, and the effect of heat treatment.

    No full text
    Antivenom is the most effective treatment of snake envenoming and is manufactured from the IgG of venom-immunised horses and sheep. Camelids have a unique IgG structure which may account for the report that camel IgG is less immunogenic and less likely to activate complement than equine or ovine IgG. Camelid IgG therefore offers potential safety advantages over conventional IgGs used for antivenom manufacture. The reported thermostability of camelid IgG also holds promise in the inclusion of a relatively inexpensive anti-microbial heat step in antivenom manufacture. However, these potential benefits of camelid IgG would be much reduced if any one of the three camel IgG subclasses dominated, or under-performed, the serological response of camels to venom immunisation because of the prohibitive manufacturing costs of having to purify, or exclude, one or more IgG subclasses. This study compared the titre, antigen-specificity, relative avidity and ability to neutralise the haemorrhagic and coagulopathic effects of Echis ocellatus venom of each IgG subclass from the venom-immunised camels. The results demonstrated that no one IgG subclass consistently out-performed or under-performed the others in their immunoreactivity to venom proteins and ability to neutralise venom-induced pathologies. We concluded therefore that IgG taken from a pool of immunised camels could be processed into antivenom without requiring the implementation of expensive chromatographic separations to select, or indeed to exclude, a specific IgG subclass. The immunoreactivity of the heavy and light chain, IgG1 subclass, was markedly more vulnerable to extreme heat treatment than the heavy chain-only IgG2 and IgG3 subclasses

    The Experimental Infection of Goats with Small Ruminant Morbillivirus Originated from Barbary Sheep

    No full text
    Peste des Petits Ruminants (PPR) is a transboundary contagious disease in domestic small ruminants. Infections with the small ruminant morbillivirus (SRMV) were regularly found in wildlife, with unknown roles in PPR epidemiology. In order to access infection dynamics and virulence, we infected German Edelziege goats intranasally with a SRMV isolate that originated from Barbary sheep from an outbreak in the United Arab Emirates. Six goats were infected with cell culture-isolated SRMV, and two goats were kept in contact. Goats were daily monitored, and clinical score was recorded. EDTA blood, nasal, conjunctival and rectal swab samples were collected for the detection of SRMV genome load and serum for serological analysis. Short incubation period in infected (4 to 5 dpi) as well as in contact goats (9 dpi) was followed by typical clinical signs related to PPR. The highest viral load was detectable in conjunctival and nasal swab samples with RT-qPCR and rapid pen-side test. Specific antibodies were detected at 7 dpi in infected and 14 dpi in contact goats. In general, high virulence and easy transmission of the virus originated from wildlife in domestic goats was observed. The virus isolate belongs to Asian lineage IV, genetically related to Chinese and Mongolian strains

    Outbreak of a Systemic Form of Camelpox in a Dromedary Herd (Camelus dromedarius) in the United Arab Emirates

    No full text
    Camelpox virus (CMLV) is the causative agent of camelpox, which frequently occurs in the Old World camelids-rearing countries except for Australia. It has also been described in experimentally inoculated New World camelids. Camelpox outbreaks are often experienced shortly after the rainy season, which occurs twice a year on the Arabian Peninsula because of the increased density of the insect population, particularly mosquitos. A systemic form of camelpox outbreak in seven dromedary camels was diagnosed by histology, virus isolation, and PCR. A phylogenetic analysis using full length CMLV genomes of the isolated CMLV strains showed a single phylogenetic unit without any distinctive differences between them. The United Arab Emirates (UAE) isolate sequences showed phylogenetical relatedness with CMLV isolates from Israel with only minor sequence differences. Although the sequences of viruses from both countries were closely related, the disease manifestation was vastly different. Our study shows that the virulence is not only determined by genetic features of CMLV alone but may also depend on other factors such as unknown aspects of the host (e.g., age, overall fitness), management, and the environment
    corecore