219 research outputs found

    Unrolled primal-dual networks for lensless cameras

    Get PDF
    Conventional models for lensless imaging assume that each measurement results from convolving a given scene with a single experimentally measured point-spread function. These models fail to simulate lensless cameras truthfully, as these models do not account for optical aberrations or scenes with depth variations. Our work shows that learning a supervised primal-dual reconstruction method results in image quality matching state of the art in the literature without demanding a large network capacity. We show that embedding learnable forward and adjoint models improves the reconstruction quality of lensless images (+5dB PSNR) compared to works that assume a fixed point-spread function

    Spatial variability and changes of metabolite concentrations in the cortico-spinal tract in multiple sclerosis using coronal CSI

    Get PDF
    We characterized metabolic changes along the cortico-spinal tract (CST) in multiple sclerosis (MS) patients using a novel application of chemical shift imaging (CSI) and considering the spatial variation of metabolite levels. Thirteen relapsing-remitting (RR) and 13 primary-progressive (PP) MS patients and 16 controls underwent (1)H-MR CSI, which was applied to coronal-oblique scans to sample the entire CST. The concentrations of the main metabolites, i.e., N-acetyl-aspartate, myo-Inositol (Ins), choline containing compounds (Cho) and creatine and phosphocreatine (Cr), were calculated within voxels placed in regions where the CST is located, from cerebral peduncle to corona radiata. Differences in metabolite concentrations between groups and associations between metabolite concentrations and disability were investigated, allowing for the spatial variability of metabolite concentrations in the statistical model. RRMS patients showed higher CST Cho concentration than controls, and higher CST Ins concentration than PPMS, suggesting greater inflammation and glial proliferation in the RR than in the PP course. In RRMS, a significant, albeit modest, association between greater Ins concentration and greater disability suggested that gliosis may be relevant to disability. In PPMS, lower CST Cho and Cr concentrations correlated with greater disability, suggesting that in the progressive stage of the disease, inflammation declines and energy metabolism reduces. Attention to the spatial variation of metabolite concentrations made it possible to detect in patients a greater increase in Cr concentration towards the superior voxels as compared to controls and a stronger association between Cho and disability, suggesting that this step improves our ability to identify clinically relevant metabolic changes

    Early pericalcarine atrophy in acute optic neuritis is associated with conversion to multiple sclerosis

    Get PDF
    Background: Previous work showed that pericalcarine cortical volume loss is evident early after presentation with acute clinically isolated optic neuritis (ON). The aims of this study were: (1) to determine whether pericalcarine atrophy in patients with ON is associated with conversion to multiple sclerosis (MS); (2) to investigate whether regional atrophy preferentially affects pericalcarine cortex; and (3) to investigate potential causes of early pericalcarine atrophy using MRI. / Methods: 28 patients with acute ON and 10 controls underwent structural MRI (brain and optic nerves) and were followed-up over 12 months. Associations between the development of MS, optic nerve, optic radiation and pericalcarine cortical damage measures were investigated using multiple linear regression models. Regional cortical volumetric differences between patients and controls were calculated using t tests. / Results: The development of MS at 12 months was associated with greater whole brain and optic radiation lesion loads, shorter acute optic nerve lesions and smaller pericalcarine cortical volume at baseline. Regional atrophy was not evident in other sampled cortical regions. Pericalcarine atrophy was not directly associated with whole brain lesion load, optic radiation measures or optic nerve lesion length. However, the association between pericalcarine atrophy and MS was not independent of these parameters. / Conclusions: Reduced pericalcarine cortical volumes in patients with early clinically isolated ON were associated with the development of MS but volumes of other cortical regions were not. Hence pericalcarine cortical regions appear particularly susceptible to early damage. These findings could be explained by a combination of pathological effects to visual grey and white matter in patients with ON

    Ongoing microstructural changes in the cervical cord underpin disability progression in early primary progressive multiple sclerosis

    Get PDF
    Background: Pathology in the spinal cord of patients with primary progressive multiple sclerosis (PPMS) contributes to disability progression. We previously reported abnormal Q-space imaging (QSI)-derived indices in the spinal cord at baseline in patients with early PPMS, suggesting early neurodegeneration. / Objective: The aim was to investigate whether changes in spinal cord QSI over 3 years in the same cohort are associated with disability progression and if baseline QSI metrics predict clinical outcome. / Methods: Twenty-three PPMS patients and 23 healthy controls recruited at baseline were invited for follow-up cervical cord 3T magnetic resonance imaging (MRI) and clinical assessment after 1 year and 3 years. Cord cross-sectional area (CSA) and QSI measures were obtained, together with standard brain MRI measures. Mixed-effect models assessed MRI changes over time and their association with clinical changes. Linear regression identified baseline MRI indices associated with disability at 3 years. / Results: Over time, patients deteriorated clinically and showed an increase in cord QSI indices of perpendicular diffusivity that was associated with disability worsening, independently of the decrease in CSA. Higher perpendicular diffusivity and lower CSA at baseline predicted worse disability at 3 years. Conclusion: Increasing spinal cord perpendicular diffusivity may indicate ongoing neurodegeneration, which underpins disability progression in PPMS, independently of the development of spinal cord atrophy

    Generalised boundary shift integral for longitudinal assessment of spinal cord atrophy

    Get PDF
    Spinal cord atrophy measurements obtained from structural magnetic resonance imaging (MRI) are associated with disability in many neurological diseases and serve as in vivo biomarkers of neurodegeneration. Longitudinal spinal cord atrophy rate is commonly determined from the numerical difference between two volumes (based on 3D surface fitting) or two cross-sectional areas (CSA, based on 2D edge detection) obtained at different time-points. Being an indirect measure, atrophy rates are susceptible to variable segmentation errors at the edge of the spinal cord. To overcome those limitations, we developed a new registration-based pipeline that measures atrophy rates directly. We based our approach on the generalised boundary shift integral (GBSI) method, which registers 2 scans and uses a probabilistic XOR mask over the edge of the spinal cord, thereby measuring atrophy more accurately than segmentation-based techniques. Using a large cohort of longitudinal spinal cord images (610 subjects with multiple sclerosis from a multi-centre trial and 52 healthy controls), we demonstrated that GBSI is a sensitive, quantitative and objective measure of longitudinal spinal cord volume change. The GBSI pipeline is repeatable, reproducible, and provides more precise measurements of longitudinal spinal cord atrophy than segmentation-based methods in longitudinal spinal cord atrophy studies

    Fully automated grey and white matter segmentation of the cervical cord in vivo

    Get PDF
    We propose and validate a new fully automated spinal cord (SC) segmentation technique that incorporates two different multi-atlas segmentation propagation and fusion techniques: Optimized PatchMatch Label fusion (OPAL) and Similarity and Truth Estimation for Propagated Segmentations (STEPS). We collaboratively join the advantages of each method to obtain the most accurate SC segmentation. The new method reaches the inter-rater variability, providing automatic segmentations equivalents to inter-rater segmentations in terms of DSC 0.97 for whole cord for any subject

    Atrophy computation in the spinal cord using the Boundary Shift Integral

    Get PDF
    In this work, we introduce a new pipeline based on the latest iteration of the BSI for computing atrophy in the SC and compare its results with the most popular atrophy measurements for this region, mean CSA. We demonstrated for the first time the use of BSI in the SC, as a sensitive, quantitative and objective measure of longitudinal tissue volume change. The BSI pipeline presented in this work is repeatable, reproducible and standardises a pipeline for computing SC atrophy

    B Cells in the CNS at Postmortem Are Associated With Worse Outcome and Cell Types in Multiple Sclerosis

    Get PDF
    BACKGROUND AND OBJECTIVES: To define the clinical and pathologic correlations of compartmentalized perivascular B cells in postmortem progressive multiple sclerosis (MS) brains. METHODS: Brain slices were acquired from 11 people with secondary progressive (SP) MS, 5 people with primary progressive (PP) MS, and 4 controls. Brain slices were immunostained for B lymphocytes (CD20), T lymphocytes (CD3), cytotoxic T lymphocytes (CD8), neuronal neurofilaments (NF200), myelin (SMI94), macrophages/microglia (CD68 and IBA1), astrocytes (glial fibrillary acidic protein [GFAP]), and mitochondria (voltage-dependent anion channel and cytochrome c oxidase subunit 4). Differences in CD20 immunostaining intensity between disease groups and associations between CD20 immunostaining intensity and both clinical variables and other immunostaining intensities were explored with linear mixed regression models and Cox regression models, as appropriate. RESULTS: CD20 immunostaining intensity was higher in PPMS (Coeff = 0.410; 95% confidence interval [CI] = 0.046, 0.774; p = 0.027) and SPMS (Coeff = 0.302; 95% CI = 0.020, 0.585; p = 0.036) compared with controls. CD20 immunostaining intensity was higher in cerebellar, spinal cord, and pyramidal onset (Coeff = 0.274; 95% CI = 0.039, 0.510; p = 0.022) compared with optic neuritis and sensory onset. Higher CD20 immunostaining intensity was associated with younger age at onset (hazard ratio [HR] = 1.033; 95% CI = 1.013, 1.053; p = 0.001), SP conversion (HR = 1.056; 95% CI = 1.022, 1.091; p = 0.001), wheelchair dependence (HR = 1.472; 95% CI = 1.108, 1.954; p = 0.008), and death (HR = 1.684; 95% CI = 1.238, 2.291; p = 0.001). Higher immunostaining intensity for CD20 was associated with higher immunostaining intensity for CD3 (Coeff = 0.114; 95% CI = 0.005, 0.224; p = 0.040), CD8 (Coeff = 0.275; 95% CI = 0.200, 0.350; p < 0.001), CD68 (Coeff = 0.084; 95% CI = 0.023, 0.144; p = 0.006), GFAP (Coeff = 0.002; 95% CI = 0.001, 0.004; p = 0.030), and damaged mitochondria (Coeff = 3.902; 95% CI = 0.891, 6.914; p = 0.011). DISCUSSION: Perivascular B cells were associated with worse clinical outcomes and CNS-compartmentalized inflammation. Our findings further support the concept of targeting compartmentalized B-cell inflammation in progressive MS

    Predicting disability progression and cognitive worsening in multiple sclerosis using patterns of grey matter volumes

    Get PDF
    OBJECTIVE: In multiple sclerosis (MS), MRI measures at the whole brain or regional level are only modestly associated with disability, while network-based measures are emerging as promising prognostic markers. We sought to demonstrate whether data-driven patterns of covarying regional grey matter (GM) volumes predict future disability in secondary progressive MS (SPMS). METHODS: We used cross-sectional structural MRI, and baseline and longitudinal data of Expanded Disability Status Scale, Nine-Hole Peg Test (9HPT) and Symbol Digit Modalities Test (SDMT), from a clinical trial in 988 people with SPMS. We processed T1-weighted scans to obtain GM probability maps and applied spatial independent component analysis (ICA). We repeated ICA on 400 healthy controls. We used survival models to determine whether baseline patterns of covarying GM volume measures predict cognitive and motor worsening. RESULTS: We identified 15 patterns of regionally covarying GM features. Compared with whole brain GM, deep GM and lesion volumes, some ICA components correlated more closely with clinical outcomes. A mainly basal ganglia component had the highest correlations at baseline with the SDMT and was associated with cognitive worsening (HR=1.29, 95% CI 1.09 to 1.52, p<0.005). Two ICA components were associated with 9HPT worsening (HR=1.30, 95% CI 1.06 to 1.60, p<0.01 and HR=1.21, 95% CI 1.01 to 1.45, p<0.05). ICA measures could better predict SDMT and 9HPT worsening (C-index=0.69-0.71) compared with models including only whole and regional MRI measures (C-index=0.65-0.69, p value for all comparison <0.05). CONCLUSIONS: The disability progression was better predicted by some of the covarying GM regions patterns, than by single regional or whole-brain measures. ICA, which may represent structural brain networks, can be applied to clinical trials and may play a role in stratifying participants who have the most potential to show a treatment effect

    Fully automated grey and white matter spinal cord segmentation

    Get PDF
    Axonal loss in the spinal cord is one of the main contributing factors to irreversible clinical disability in multiple sclerosis (MS). In vivo axonal loss can be assessed indirectly by estimating a reduction in the cervical cross-sectional area (CSA) of the spinal cord over time, which is indicative of spinal cord atrophy, and such a measure may be obtained by means of image segmentation using magnetic resonance imaging (MRI). In this work, we propose a new fully automated spinal cord segmentation technique that incorporates two different multi-atlas segmentation propagation and fusion techniques: The Optimized PatchMatch Label fusion (OPAL) algorithm for localising and approximately segmenting the spinal cord, and the Similarity and Truth Estimation for Propagated Segmentations (STEPS) algorithm for segmenting white and grey matter simultaneously. In a retrospective analysis of MRI data, the proposed method facilitated CSA measurements with accuracy equivalent to the inter-rater variability, with a Dice score (DSC) of 0.967 at C2/C3 level. The segmentation performance for grey matter at C2/C3 level was close to inter-rater variability, reaching an accuracy (DSC) of 0.826 for healthy subjects and 0.835 people with clinically isolated syndrome MS
    • …
    corecore