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A B S T R A C T

Spinal cord atrophy measurements obtained from structural magnetic resonance imaging (MRI) are associated with disability in many neurological diseases and serve
as in vivo biomarkers of neurodegeneration. Longitudinal spinal cord atrophy rate is commonly determined from the numerical difference between two volumes (based
on 3D surface fitting) or two cross-sectional areas (CSA, based on 2D edge detection) obtained at different time-points. Being an indirect measure, atrophy rates are
susceptible to variable segmentation errors at the edge of the spinal cord. To overcome those limitations, we developed a new registration-based pipeline that
measures atrophy rates directly. We based our approach on the generalised boundary shift integral (GBSI) method, which registers 2 scans and uses a probabilistic XOR
mask over the edge of the spinal cord, thereby measuring atrophy more accurately than segmentation-based techniques. Using a large cohort of longitudinal spinal
cord images (610 subjects with multiple sclerosis from a multi-centre trial and 52 healthy controls), we demonstrated that GBSI is a sensitive, quantitative and
objective measure of longitudinal spinal cord volume change. The GBSI pipeline is repeatable, reproducible, and provides more precise measurements of longitudinal
spinal cord atrophy than segmentation-based methods in longitudinal spinal cord atrophy studies.
1. Introduction

Spinal cord atrophy is a measure of overall spinal cord damage and
has important clinical correlates in a number of neurological diseases. In
multiple sclerosis (MS), spinal cord atrophy occurs from the early phases
of the disease and is associated with overall disability and clinical pro-
gression (Ciccarelli et al., 2019; Moccia, Ruggieri, et al., 2019). Similarly,
in amyotrophic lateral sclerosis (ALS), spinal cord atrophy predicts dis-
ease progression, respiratory failure and survival rate (El Mendili et al.,
2019). Furthermore, spinal cord atrophy can occur as a consequence of
spinal cord injury and its monitoring over time can shed light on the most
aggressive aspects of the disease (Denecke et al., 2019). As such, spinal
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cord atrophy has been suggested as a possible endpoint in studies of
neuroprotection (Antonescu et al., 2018; Moccia, Ruggieri, et al., 2019).

Different MS clinical trials have already used spinal cord atrophy as a
secondary outcome measure (Kalkers et al., 2002; Leary et al., 2003; Lin
et al., 2003; Montalban et al., 2009; Kapoor et al., 2010; Yaldizli et al.,
2015; Tur et al., 2018), but yielded inconclusive or negative results.
Those disappointing results may be, at least in part, due to the relatively
high measurement noise and low reproducibility of the
segmentation-based methods (Prados and Barkhof, 2018; Moccia et al.,
2017). Currently, spinal cord atrophy is determined by numerical sub-
traction of volume (based on 3D surface fitting) or cross-sectional area
(CSA) (based on 2D edge detection on serial images) obtained separately
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at each time-point, providing what could be considered an indirect esti-
mates of atrophy rates (Wheeler-Kingshott et al., 2014; Stroman et al.,
2014). This strategy could introduce noise due to inconsistency in seg-
menting the exact same region for two different time-points. On the
contrary, brain atrophy measures have been a cornerstone in the study of
interventions with putative neuroprotective effects (Montalban et al.,
2017; Kappos et al., 2018; Tur et al., 2018), because of the application of
registration-based methods that provide direct estimates of brain atrophy,
such as the Structural Image Evaluation using Normalization of Atrophy
(SIENA) (Smith et al. 2000, 2001) and the Boundary Shift Integral (BSI)
method (Freeborough and Fox, 1997; Leung et al. 2010, 2012; Prados
et al., 2015). Both SIENA and BSI have reduced sample size requirements
to detect significant differences between groups or over time, and are
nowadays well-established methods to measure longitudinal brain atro-
phy in clinical trials and in observational studies for neurodegenerative
diseases (Altmann et al., 2009; Schott et al., 2010).

Here, we present a specific pipeline based on the generalised
formulation of BSI for the quantification of spinal cord atrophy using
direct estimates. Possible consequences for the design of clinical trials
and observational studies (e.g., sample size) are evaluated as a bench-
mark between techniques.

2. Material and methods

2.1. Pipeline overview

A graphic overview of the pipeline is presented in Fig. 1 and is
applicable to datasets with T1-weighted (T1-w) sequences with identical
parameters, ideally using 1 mm isometric voxel and with acquisitions at
two time-points for each subject. The first step is the manual or automatic
segmentation of the spinal cord from T1-w images (Prados et al., 2016;
Yiannakas et al., 2016; Yiannakas et al., 2012; Horsfield et al., 2010; Gros
et al., 2019; De Leener, L�evy, et al., 2017). Afterwards, the extracted
masks are used to compute a ring surrounding the spinal cord to scale the
signal intensity of the images accounting for the presence of the noise
floor (Jones and Basser, 2004); for this step the signal intensities in the
whole 3D volume are corrected using a fast version of the adaptive
non-local means filter algorithm (Trist�an-Vega et al., 2012). Then, an
intensity inhomogeneity correction is applied to the 3D data using the N4
algorithm (Tustison et al., 2010). Once images are corrected for noise and
intensity non-uniformities, both spinal cord time-points are straightened
using a specific software available within the spinal cord toolbox (SCT)
(De Leener, Mangeat, et al., 2017). This is an essential step to facilitate
the registration between baseline and follow-up scans, as it removes the
Fig. 1. Spinal cord longitudinal atrophy computation pipe
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difference in curvature between time-points due to subject positioning in
the scanner. Both spinal cords are then registered to the half-way space
using a symmetric, affine and inverse-consistent method (Modat et al.,
2014). To reduce the residual bias field and homogenise the grey scale
between both registered time-points, a symmetric differential bias
correction is applied (Lewis and Fox, 2004). Finally, using the general-
ised boundary shift integral (GBSI) (Prados et al., 2015), we obtain at-
rophy estimates between the two time-points. Details of specific steps are
provided in the following sections.

2.1.1. Spinal cord segmentation
The whole cord is segmented (i.e., white and grey matter together),

defining the spinal cord boundaries and the cranio-caudal extension of
tissue over which the GBSI estimates are required. This segmentation is
computed separately and independently for each time-point, over the
same spinal cord segments. In this study, we used the spinal cord segment
C2–C5, putting the landmarks in the middle of the corresponding spinal
cord disks, but other sections could be equally used. The segmentation
can be obtained manually, semi- or fully-automatically using a wide
range of techniques, such as the active surface method available in JIM
(JIM 6.0, Xinapse Systems, Aldwincle, UK) (Horsfield et al., 2010), tools
from the SCT (De Leener, L�evy, et al., 2017; Gros et al., 2019; Yiannakas
et al., 2016), or other available techniques (Prados et al., 2016). The
extracted spinal cord segmentation can be represented with a hard (bi-
nary) or a soft (probability) mask. As the acquired spinal cord extension
can vary by a few slices between time-points, e.g. due to positioning of
the subject in the scanner, the longitudinal atrophy is computed over the
intersection of these regions of interest, discarding the pixels that are not
covered at both time-points.

In this paper, percentage spinal cord volume change (PCVC) was
obtained as the difference between follow-up and baseline CSA, divided
by baseline CSA and multiplied by 100. Segmentation masks for
computing CSA were then used as inputs for the BSI pipeline.

2.1.2. Image denoising
The original T1-w images are denoised using a fast version

(Trist�an-Vega et al., 2012) of the adaptive non-local mean filter (Buades
et al., 2005) using the mask from the segmented spinal cord. In detail, for
computing the root power of the noise, we calculate the standard devi-
ation of the signal in a ring within the cerebrospinal fluid (CSF) and scale
it to account for the presence of a noise floor (Jones and Basser, 2004)
(this approach is standard on T1-w images, where this can be obtained
from regions where signal from CSF is suppressed). The ring within the
CSF is derived by dilating the spinal cord mask obtained as described
line using GBSI (Generalised Boundary Shift Integral).
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above (Section 2.1.1) with 2 pixel layers and then subtracting the mask
after dilating the spinal cord mask only once. Prior to calculating the
standard deviation, we discard any value of voxels within the extracted
ring that are more than 2 standard deviations above the mean, in order to
discard intensity values from nerve roots or other spurious signal
intensities.

2.1.3. Inhomogeneity correction
Data are corrected for intensity inhomogeneity using N4 (Tustison

et al., 2010) only over the region determined by the two times dilated
spinal cord mask. The following parameters are used (Prados et al.,
2015): full width at half maximum (FWHM) ¼ 0.05, convergence
threshold ¼ 0.0001 and a maximum number of iterations ¼ 1000.

2.1.4. Cord straightening
A common challenge in longitudinal spinal cord studies is the vari-

ability of the position of the subject within the MRI scanner between
time-points. To remove any difference in the resulting cord curvature
between time-points, a robust and accurate method for straightening
magnetic resonance images of the spinal cord is used, based on the pre-
viously computed spinal cord segmentation (De Leener, Mangeat, et al.,
2017). The main feature of this method is that it preserves spinal cord
topology, which is essential for measuring subtle changes in spinal cord
edges when using GBSI. The straightening method is freely available as
part of the SCT software package (De Leener, L�evy, et al., 2017).

2.1.5. Half-way space registration
After straightening both time-points, images are registered to the half-

way space using an affine transformation in order to avoid biases that
would be introduced if registering one time-point to the other (Smith
et al., 2000; Reuter et al., 2012; Leung et al., 2012). This step is achieved
using an inverse-consistent and symmetric algorithm (Modat et al.,
2014). Once the transformations are obtained, images and corresponding
masks for each time-point are linearly resampled to the common
half-way space.

2.1.6. Differential bias correction
A longitudinal differential bias correction method is used to remove

the residual intensity inhomogeneity-derived differences between the
baseline and the repeated images (radius ¼ 5 voxels) (Lewis and Fox,
2004). This step is needed, despite the previous cross-sectional in-
homogeneity correction, to avoid artificial atrophy values by the
remaining intensity differences from the cross-sectional inhomogeneity
correction method.

2.1.7. Intensity normalization
Another image pre-processing step, i.e. prior to computing the GBSI,

is the normalization of the image intensities (Leung et al., 2010) and the
extraction of the probabilistic area from which GBSI will be computed
(Prados et al., 2015). The intensity normalization of the baseline and
follow-up images is obtained from a linear regression between the
average tissue intensity inside the cord and inside the CSF. The tissue
intensity values are computed using a k-means algorithm (k¼ 2) which is
delimitated by a region of interest obtained from each input mask (after 2
dilations).

2.1.8. Probabilistic XOR
The probabilistic XOR mask is obtained from the half-way linearly-

resampled segmentation masks following the same steps already intro-
duced for the brain GBSI calculations (Prados et al., 2015). This mask
identifies the voxels with high probability to be tissue at the edge of the
cord.

2.1.9. Atrophy computation
Finally, the GBSI is computed on a voxel-by-voxel basis as the dif-

ference in intensity between the baseline and the follow-up image within
3

a clipped window that can be fixed (Freeborough and Fox, 1997) or
adaptive (Leung et al., 2010) and can be obtained from the two k-means
class values. The clipped window goal is to catch the difference between
tissue intensities at the two time-points, reducing the background influ-
ence. Then the intensity differences are weighted by the probabilistic
XORmask voxel-wise. For the spinal cord GBSI, we used a predetermined
clipping window. To increase robustness, the “forward” and “backward”
BSI (Leung et al., 2010) is calculated for each pair of images (i.e. swap-
ping baseline and follow-up images and repeating the intensity normal-
ization, probabilistic XOR and atrophy computation steps), and the mean
of the results is included.

PCVC was calculated by dividing the GBSI value by the binarized,
straightened and registered baseline cord mask volume.

2.2. Software

The N4, denoising, differential bias correction and GBSI methods are
all freely available as part of NifTK package at https://cmiclab.cs.ucl.ac.u
k/CMIC/NifTK. For registration purposes, we used NiftyReg software
package. SCT has been used for straightening, and can be found at
https://github.com/neuropoly/spinalcordtoolbox. GBSI has been
implemented in this paper using these software packages, however, other
software packages with the same goal could be used in each step.

2.3. MRI data

For this study, we used three different MRI datasets to assess the
performance of GBSI versus CSA. First, we used a retrospective single-
centre test dataset with healthy controls only (Yiannakas et al., 2016)
to compare the reproducibility of measuring the absence of longitudinal
spinal cord atrophy (PCVC) with GBSI using three different CSA seg-
mentation techniques (JIM, SCT Propseg and SCT DeepSeg) (Yiannakas
et al., 2016). Secondly, we computed PCVC with GBSI and CSA using JIM
over T1-w data from a largemulti-site clinical trial in primary progressive
MS (Lublin et al., 2016). We also included healthy controls that under-
went spinal cord MRI within previous studies conducted at the Queen
Square MS Centre, University College London (Brownlee et al., 2017;
Kearney et al., 2014); the latter dataset was included in order to char-
acterize physiological spinal cord atrophy rates and consequently
compare to pathological rates.

2.3.1. Test dataset
We used previously acquired 3D T1-w images of the spinal cord with

1 mm isotropic voxel (Yiannakas et al., 2016) using a 3 T Philips Achieva
MRI system with RF dual-transmit technology (Philips Medical Systems,
Best, Netherlands). These data were acquired twice with repositioning of
the subjects in-between acquisitions, on 8 healthy controls (mean age
33.5� 6.7 years). Afterwards, we performed over the same 8 subjects the
spinal cord segmentation using three well-established techniques: a
semi-automatic delineation method of the CSA, using JIM 6, and two
fully-automatic segmentation methods using PropSeg and DeepSeg al-
gorithms available with the SCT (De Leener, L�evy, et al., 2017; Gros et al.,
2019). From these three segmentation techniques, we obtained PCVC
with GBSI.

2.3.2. Multiple sclerosis trial data
INFORMS is a phase 3, randomised, double-blind, placebo-controlled

clinical trial that included 970 primary progressive MS (PPMS) patients
with an EDSS score between 3.5 and 6 recruited from September 2008 to
August 2011 from 148 different sites across the world, using 1.5 T and 3 T
MRI scanners. The trial compared oral fingolimod to placebo, but failed
to demonstrate any efficacy on both clinical (e.g., disability progression)
and radiological outcomes (e.g., brain and spinal cord atrophy) (Lublin
et al., 2016; Yaldizli et al., 2015).

From the original trial population (n ¼ 970) (Lublin et al., 2016), we
included only patients with dedicated T1-w spinal cord scans (1 mm

https://cmiclab.cs.ucl.ac.uk/CMIC/NifTK
https://cmiclab.cs.ucl.ac.uk/CMIC/NifTK
https://github.com/neuropoly/spinalcordtoolbox
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isotropic isometric voxel) at baseline and 1-year follow-up. The inclusion
of patients with spinal cord scans at baseline and 1-year follow-up visits
was decided because of the previous evidence that cord atrophy was
non-linear in this cohort over the years (Yaldizli et al., 2015), and thus it
was preferable to include a homogeneous population, representative of
PPMS recruited for a hypothetical phase 2 clinical trial of 1-year duration
using spinal cord atrophy as the main outcome measure. Two indepen-
dent raters (MM and FP) performed a quality check of the images. MM
checked pre-processed images (signal-to-noise ratio, spinal cord
coverage, image contrast, differences between time-points). FP checked
post-processed results, after registration between time-points, straight-
ening and longitudinal bias field correction, and prior to computing
GBSI. Each INFORMS site was then independently classified as providing
poor, average or good quality data. During the review, 49 subjects (5.3%)
were excluded due to sub-optimal image quality (e.g. poor image contrast
or motion-related artifacts) and 251 (25.9%) were excluded because no
dedicated longitudinal spinal cord acquisitions were available. The
overall agreement for this visual quality check between raters was 97.3%
(Cohen’s kappa ¼ 0.949). Considering that there was 100% agreement
between raters when using data from sites providing good quality im-
ages, for statistical purposes, we opted to group all sites into 1) sites
providing good quality data (28 sites, 131 patients), and 2) and sites
providing average-low quality data (102 sites, 479 patients) (see Fig. 2).
2.4. Single site healthy control group

We included 52 healthy controls (age ¼ 28.6 years; female sex ¼
53.5%) with spinal cord scans acquired 1-year apart as a comparison
group for spinal cord atrophy measurements. Scans were obtained from
Fig. 2. Example of poor and good quality scans within the INFORMS cohort. First row
good quality.
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previous MRI studies conducted at the UCL Queen Square Institute of
Neurology, London, UK (Brownlee et al., 2017; Kearney et al., 2014). All
of them underwent a dedicated 3D T1-w 1mm isotropic voxel acquisition
using a 3 T Philips Achieva MRI systemwith RF dual-transmit technology
(Philips Medical Systems, Best, Netherlands). Images were acquired and
processed as previously described in this paper for the INFORMS trial. We
used this group as reference group for subtracting physiological spinal
cord atrophy and, thus, for computing pathological spinal cord atrophy in
the INFORMS data. We expected atrophy values close to 0 for both
measures (CSA and GBSI).
2.5. Ethics statement

Consent forms were approved by the relevant institutional review
boards, and all patients gave written informed consent.
2.6. Statistical methods

To evaluate the reproducibility of GBSI measurements obtained with
different segmentation methods, we calculated the intraclass correlation
coefficient (ICC) for GBSI obtained from JIM and SCT segmentations
using PropSeg (De Leener, L�evy, et al., 2017) and DeepSeg (Gros et al.,
2019) (on the test dataset).

To evaluate the agreement between segmentation and registration
measurements (on the INFORMS dataset), CSA and GBSI methods were
included in a linear regressionmodel. Also, CSA and GBSI were compared
using Cohen’s d effect size, estimating the mean difference between
measurements.

To evaluate the spinal cord atrophy rates for segmentation and
shows images classified as of poor quality, second row shows example images of



Fig. 3. Box-and-Whisker plots show the 1-year spinal cord atrophy at C2-5 level
with CSA (Cross-Sectional Area) and GBSI (Generalised Boundary
Shift Integral).

Fig. 4. Scatter plot shows association between 1-year spinal cord atrophy
measurements obtained at C2-5 level using CSA (Cross-sectional Area) and GBSI
(Generalised Boundary Shift Integral). P-value and coefficient is reported from
linear regression model.
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registration measurements, mean PCVC and standard deviation were
calculated for CSA and GBSI methods on the INFORMS dataset and in
controls; mean PCVC and standard deviation were also calculated in
INFORMS sites providing good quality data. Differences in PCVC mea-
surements between PPMS and controls (independent variable, using
controls as the reference group) were estimated using linear regression
models including CSA and GBSI in turn as the dependent variable, and
country and site as covariates. Results are presented as coefficients
(Coeff) (reflecting the change in PCVC that corresponds to PPMS, when
compared with physiological spinal cord loss in controls), 95% confi-
dence intervals (95%CI) and p-values (Schneider et al., 2010).

To evaluate the measurement precision of CSA and GBSI methods
(from the INFORMS dataset), we computed the sample size needed to
detect treatment effect from spinal cord atrophy in a hypothetical clinical

trial of MS patients, using the formula n ¼ 2ðZαþZ1�βÞ2σ2
Δ2 , where n is the

required sample size per treatment arm in 1:1 controlled trials, Zα and Z1-
β are constants (set at 5% alpha-error and 80% power, respectively), σ is
the standard deviation of the measurement (PCVC for CSA or GBSI) and Δ
the estimated effect size (Altmann et al., 2009). With a conservative
approach, the treatment effect was defined as the variation in PCVC
between PPMS and controls, as estimated by Coeff from the linear
regression models (Cawley et al., 2018; Moccia and Prados, 2019).
Different treatment effects were considered (e.g., 30%, 60% and 90%),
which were representative of the variation in spinal cord atrophy mea-
surements expected in MS patients when compared with the physiolog-
ical loss in spinal cord size. The standard deviation for each group was
included in the sample size formula. Calculations were performed first in
the whole PPMS cohort and then by selecting the sites which provided
good quality images only.

Significance level was set at p < 0.05. Statistical analyses were per-
formed using Stata 15.0 (College Station, Texas, US).

All the reported longitudinal atrophy values are in percentage units.

3. Results

3.1. Test dataset

On the test dataset, we observed moderately similar atrophy values
for GBSI independently of the segmentation technique used as input
(GBSI from JIM segmentation ¼ �0.38 � 1.48, GBSI from SCT Propseg
segmentation ¼ �0.40 � 3.07, GBSI from SCT Deepseg segmentation ¼
�0.86 � 3.66, ICC(JIM, SCT Propseg and SCT Deepseg) ¼ 0.73).
5

3.2. INFORMS dataset and controls

For the INFORMS dataset, the final cohort included 610 PPMS pa-
tients (62.8% of the trial population), coming from 130 sites across 18
countries. As a comparison group, we included 52 healthy controls from
one site.

In PPMS patients from all sites, we observed spinal cord loss during
the course of 1-year (CSA¼�1.33� 3.62; GBSI¼�0.50� 1.60) (Fig. 3).
Spinal cord atrophy measurements obtained with CSA were correlated to
those obtained with GBSI (Coeff ¼ 0.86; 95% CI ¼ 0.71, 1.02; p < 0.01)
(Fig. 4), with relatively small difference between the two groups
(Cohen’s d effect size ¼ 0.17, corresponding to 17% difference between
measurements). GBSI resulted in lower standard deviation (1.60% vs
3.62%), and lower median absolute deviation than CSA (1.32% vs
2.50%). When including INFORMS good image quality sites only, spinal
cord atrophy was more pronounced and associated with lower standard
deviation for both methods (CSA¼�1.58� 2.95; GBSI¼�0.79� 1.39).

In healthy controls, PCVC remained essentially stable over 1 year
(CSA ¼ �0.53 � 5.24; GBSI ¼ �0.11 � 2.72). GBSI provided a smaller
mean and standard deviation than CSA.

On the linear regression model adjusted by country and site of MRI
acquisition, there was no significant difference in 1-year PCVC between
PPMS and healthy controls using CSA (all sites: Coeff ¼ �0.80; 95%CI ¼
�1.87, 0.26; p¼ 0.14; good image quality sites: Coeff¼�1.05; 95%CI¼
�2.23, 0.12; p¼ 0.08); using GBSI, there was a significantly faster rate of
spinal cord atrophy in PPMS, when compared with healthy controls (all
sites: Coeff ¼ �0.62; 95%CI ¼ �1.10, �0.13; p ¼ 0.01; good image
quality sites: Coeff ¼ �0.84; 95%CI ¼ 1.43, �0.25; p < 0.01). Sample
size estimates were consistently lower for GBSI, when compared with
CSA, especially for good quality sites (Table 1).

4. Discussion

Our results showed that a registration-based measurement of spinal
cord atrophy (GBSI) improves spinal cord atrophy measurement preci-
sion and sensitivity to change in longitudinal studies. GBSI exceeded the
sensitivity established by the present gold standard method for
measuring longitudinal spinal cord atrophy (i.e., segmentation methods).
The better performance using GBSI is directly related to the greater
measurement precision (as indirectly shown by the lower standard de-
viation). This is because GBSI is able to derive PCVC values directly from
small intensity changes between images at the cord boundaries,



Table 1
Sample size estimates for CSA (Cross-sectional Area) and GBSI (Generalised
Boundary Shift Integral). Sample size estimates are reported for CSA and GBSI.
Number of included patients for the analysis, and coefficient of spinal cord at-
rophy with standard deviation used in the sample size formula are also reported.
Different effect size has been hypothesized (30%, 60% and 90%).

CSA GBSI

Effect
size

All sites
N¼479
Coeff¼-
0.80
SD¼ 3.62

Good image quality
sites
N¼131
Coeff¼-1.05
SD¼ 2.95

All sites
N¼479
Coeff¼-
0.62
SD¼ 1.60

Good image quality
sites
N¼131
Coeff¼-0.84
SD¼ 1.39

30% 3567 1375 1160 408
60% 892 344 290 102
90% 396 153 129 45
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accounting for partial volume effects in these regions which are critical
for measuring changes. Moreover, the use of the probabilistic XOR
(pXOR) region for weighting the boundary shift integral benefits the
calculation over specific tissue boundaries, excluding voxels in areas that
might reduce its sensitivity (e.g., voxels with partial volume with CSF or
the centre voxels of the spinal cord). This is particularly relevant in the
spinal cord where there are extremely close-fitting surfaces that can be
affected by changes even in a small number of voxels.

Conventional segmentation-based methods (e.g, CSA) rely on the
difference between the mean of the areas obtained from the hard seg-
mentation at each time-point. This approach is not considering partial
volume averaging effects and can introduce greater variability, especially
in acquisitions with large voxel sizes or between scans with different
intensity scales. This fluctuation in CSA differences is also a potential
explanation for GBSI’s superior performance, systematically having
smaller standard deviations and sample size estimates than CSA.

The correlation between CSA and GBSI was very high (see Fig. 4,
Coeff ¼ 0.87 and p < 0.01), showing that they had an excellent agree-
ment, with small mean difference. Hence, we can consider that GBSI is
measuring similar cord change (or atrophy) as with CSA, but with smaller
standard deviation (and higher sensitivity).

Test results using three segmentation techniques showed that GBSI is
robust and able to measure similar levels of atrophy, independently of the
segmentation method used (JIM, SCT Propseg or SCT DeepSeg). This is a
consequence of computing atrophy as the intensity difference of the
spinal cord boundary. The standard deviation differences come from the
changes in the outer and inner border of the pXOR mask. The manual
delineation using ASM from JIM tends to generate a slightly thinner
pXOR mask than PropSeg from SCT (Fig. 5). However, test dataset ICC
values for GBSI were lower than previously published for CSA (Yiannakas
et al., 2016). Overall, we demonstrated the feasibility to obtain longi-
tudinal spinal cord atrophy rates with GBSI using JIM, SCT PropSeg or
SCT DeepSeg. Future work could consider analysing the stability of the
method using different spinal cord segments, a wider range of spinal cord
segmentation methods and different fields-of-view.

Future longitudinal observational studies and clinical trials in MS can
benefit from GBSI for spinal cord atrophy calculation, as an important
surrogate marker of disability progression (Ciccarelli et al., 2019; Moccia
Fig. 5. Example of pXOR masks obtained from baseline and follow-up segmentat
Cord Toolbox).
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and Ruggieri, 2019). Our sample size estimates for 1-year spinal cord
atrophy with GBSI are of the same magnitude as those required for brain
atrophy, the current gold standard primary outcome measure in phase 2
clinical trials for progressive MS (Chataway et al., 2014; Fox et al., 2018;
Cambron et al., 2019). For instance, the sample size to detect a 60%
treatment effect on spinal cord atrophy in 1-year is 290 subjects for GBSI
and three-fold larger with CSA. Further improvements could be achieved
by including only sites providing good quality images (e.g., standard
acquisition protocol, centralized MRI acquisition).

Unfortunately, clinical variables were not available and, thus, it was
not possible to assess the potential effect size of the intervention. In the
future, it would be interesting to assess also the sensitivity to change in
the presence of treatment. Change in MS lesion intensities might have an
impact on GBSI estimates, and future work could address the impact of
MS lesions and how to reduce it. Another limitation was the use a control
group from a single centre/scanner; to the best of our knowledge, there is
no existing dataset of healthy controls with sample size and MRI acqui-
sitions fully comparable to INFORMS. In the absence of that, we used our
single centre/scanner healthy control group to obtain more conservative
atrophy estimates (and subsequent sample size calculation) than would
have been the case when assuming zero atrophy with no standard devi-
ation, which would have led to overly optimistic sample size estimates.
Finally, this control population is over ten-fold smaller than MS patients,
possibly explaining the larger standard deviation.

The acquired voxel size is the main limiting factor that determines the
degree of precision of GBSI, where small and isotropic voxels are themost
suitable to use. Anisotropic voxel sizes (e.g., with 5 mm or more slice
thickness, as frequently implemented in spinal cord protocols) will
introduce inconsistencies when using the present pipeline. As this is a
longitudinal approach, it is quite plausible that if each acquisition is
performed with a different positioning of the slices compared to the
actual spinal cord segments, even simply because of curvature, slices
between time-points could hardly be matched, consequently impacting
on the registration step and the final shift integral calculation. Thus, GBSI
requires a standard high-quality isotropic T1-w image protocol for spinal
cord MRI. Nowadays this is achievable thanks to a consensus multi-
vendor dedicated protocol that has been developed between 30 MRI
international centres and made publicly available at the website
http://www.spinalcordmri.org (Protocols’ section). This protocol eases
the adoption of the most standard spinal cord MRI acquisitions and,
consequently, the use of GBSI. Finally, GBSI has been developed so far for
T1-w images, which limits its applicability to the spinal cord, where this
type of acquisition is frequently not available. The GBSI pipeline includes
several intensity corrections (bias field correction, longitudinal sym-
metric bias field correction, intensity normalization and use of a clipping
window) to obtain a direct estimate of tissue change between timepoints;
despite these efforts to equalise the images, we still might find some
residual noise due to the underlying signal. As future work, we aim to
adapt GBSI to support other types of spinal cord images.

5. Conclusion

In this work, we introduced a new pipeline based on the latest iter-
ation of BSI for computing longitudinal atrophy in the spinal cord and
ions using Active Surface Modelling from JIM, or PropSeg from SCT (Spinal

http://www.spinalcordmri.org
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compared its results with the commonly used segmentation-based spinal
cord atrophy measurement (numerical difference of mean CSA between
time-points). We demonstrated that GBSI, a registration-based technique,
is a sensitive, quantitative and objective measure of longitudinal tissue
volume changes in the spinal cord. The GBSI pipeline presented in this
work is repeatable and reproducible and could become the preferred
method for computing longitudinal spinal cord atrophy in clinical trials
and observational studies.
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