36 research outputs found

    The effect of genomic information on optimal contribution selection in livestock breeding programs

    Get PDF
    BACKGROUND: Long-term benefits in animal breeding programs require that increases in genetic merit be balanced with the need to maintain diversity (lost due to inbreeding). This can be achieved by using optimal contribution selection. The availability of high-density DNA marker information enables the incorporation of genomic data into optimal contribution selection but this raises the question about how this information affects the balance between genetic merit and diversity. METHODS: The effect of using genomic information in optimal contribution selection was examined based on simulated and real data on dairy bulls. We compared the genetic merit of selected animals at various levels of co-ancestry restrictions when using estimated breeding values based on parent average, genomic or progeny test information. Furthermore, we estimated the proportion of variation in estimated breeding values that is due to within-family differences. RESULTS: Optimal selection on genomic estimated breeding values increased genetic gain. Genetic merit was further increased using genomic rather than pedigree-based measures of co-ancestry under an inbreeding restriction policy. Using genomic instead of pedigree relationships to restrict inbreeding had a significant effect only when the population consisted of many large full-sib families; with a half-sib family structure, no difference was observed. In real data from dairy bulls, optimal contribution selection based on genomic estimated breeding values allowed for additional improvements in genetic merit at low to moderate inbreeding levels. Genomic estimated breeding values were more accurate and showed more within-family variation than parent average breeding values; for genomic estimated breeding values, 30 to 40% of the variation was due to within-family differences. Finally, there was no difference between constraining inbreeding via pedigree or genomic relationships in the real data. CONCLUSIONS: The use of genomic estimated breeding values increased genetic gain in optimal contribution selection. Genomic estimated breeding values were more accurate and showed more within-family variation, which led to higher genetic gains for the same restriction on inbreeding. Using genomic relationships to restrict inbreeding provided no additional gain, except in the case of very large full-sib families

    An algorithm for efficient constrained mate selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mate selection can be used as a framework to balance key technical, cost and logistical issues while implementing a breeding program at a tactical level. The resulting mating lists accommodate optimal contributions of parents to future generations, in conjunction with other factors such as progeny inbreeding, connection between herds, use of reproductive technologies, management of the genetic distribution of nominated traits, and management of allele/genotype frequencies for nominated QTL/markers.</p> <p>Methods</p> <p>This paper describes a mate selection algorithm that is widely used and presents an extension that makes it possible to apply constraints on certain matings, as dictated through a group mating permission matrix.</p> <p>Results</p> <p>This full algorithm leads to simpler applications, and to computing speed for the scenario tested, which is several hundred times faster than the previous strategy of penalising solutions that break constraints.</p> <p>Conclusions</p> <p>The much higher speed of the method presented here extends the use of mate selection and enables implementation in relatively large programs across breeding units.</p

    Optimization of a crossing system using mate selection

    Get PDF
    A simple model based on one single identified quantitative trait locus (QTL) in a two-way crossing system was used to demonstrate the power of mate selection algorithms as a natural means of opportunistic line development for optimization of crossbreeding programs over multiple generations. Mate selection automatically invokes divergent selection in two parental lines for an over-dominant QTL and increased frequency of the favorable allele toward fixation in the sire-line for a fully-dominant QTL. It was concluded that an optimal strategy of line development could be found by mate selection algorithms for a given set of parameters such as genetic model of QTL, breeding objective and initial frequency of the favorable allele in the base populations, etc. The same framework could be used in other scenarios, such as programs involving crossing to exploit breed effects and heterosis. In contrast to classical index selection, this approach to mate selection can optimize long-term responses

    Using an evolutionary algorithm and parallel computing for haplotyping in a general complex pedigree with multiple marker loci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Haplotype reconstruction is important in linkage mapping and association mapping of quantitative trait loci (QTL). One widely used statistical approach for haplotype reconstruction is simulated annealing (SA), implemented in SimWalk2. However, the algorithm needs a very large number of sequential iterations, and it does not clearly show if convergence of the likelihood is obtained.</p> <p>Results</p> <p>An evolutionary algorithm (EA) is a good alternative whose convergence can be easily assessed during the process. It is feasible to use a powerful parallel-computing strategy with the EA, increasing the computational efficiency. It is shown that the EA can be ~4 times faster and gives more reliable estimates than SimWalk2 when using 4 processors. In addition, jointly updating dependent variables can increase the computational efficiency up to ~2 times. Overall, the proposed method with 4 processors increases the computational efficiency up to ~8 times compared to SimWalk2. The efficiency will increase more with a larger number of processors.</p> <p>Conclusion</p> <p>The use of the evolutionary algorithm and the joint updating method can be a promising tool for haplotype reconstruction in linkage and association mapping of QTL.</p

    Management of lethal recessive alleles in beef cattle through the use of mate selection software

    Get PDF
    International audienceAbstractBackgroundRecessive loss-of-function (LOF) alleles at genes which are essential for life, can result in early embryonic mortality. Cattle producers can use the LOF carrier status of individual animals to make selection and mate allocation decisions.MethodsTwo beef cattle breeding strategies i.e. (1) selection against LOF carriers as parents and (2) simultaneous selection and mate allocation to avoid the occurrence of homozygous offspring in three scenarios, which differed in number and frequency of LOF alleles were evaluated using the mate selection program, MateSel. Scenarios included (a) seven loci with high-frequency LOF alleles, (b) 76 loci with low-frequency LOF alleles, and (c) 50 loci with random high- and low-frequency LOF alleles. In addition, any savings resulting from the information obtained by varying the percentage (0–100%) of the herd genotyped, together with segregation analysis to cover ungenotyped animals, were calculated to determine (1) which percentage optimized net profit for a fixed cost of genotyping ($30/test), and (2) the breakeven cost for genotyping.ResultsWith full knowledge of the LOF alleles carried by selection candidates, the most profitable breeding strategy was always simultaneous selection and mate allocation to avoid homozygous affected offspring (aa) as compared to indiscriminate selection against carrier parents (Aa). The breakeven value of genotyping depended on the number of loci modeled, the LOF allele frequencies, and the mating/selection strategies used. Genotyping was most valuable when it was used to avoid otherwise high levels of embryonic mortalities. As the number of essential loci with LOF alleles increased, especially when some were present at relatively high minor allele frequencies, embryonic losses increased, and profit was maximized by genotyping 10 to 20% of a herd and using that information to reduce these losses.ConclusionsGenotyping 100% of the herd was never the most profitable outcome in any scenario; however, genotyping some proportion of the herd, together with segregation analysis to cover ungenotyped animals, maximized overall profit in scenarios with large numbers of loci with LOF alleles. As more LOF alleles are identified, such a mate selection software will likely be required to optimally select and allocate matings to balance the rate of genetic gain, embryonic losses, and inbreeding

    Analysis of Alternative Pure-breeding Structures for Sheep in Smallholder and Pastoral Production Circumstances in the Tropics

    Get PDF
    The key issue in this study was to technically compare, through stochastic simulation, different breeding programmes that vary in the level of interaction between breeders and producers. The breeding structures considered were: (i) a single closed nucleus providing seed-stock to village flocks, (ii) a group of commercial flocks running a co-operative (‘ram circle’) breeding programme with no nucleus, (iii) an interactive two-tier open nucleus breeding scheme, comprising a nucleus and a commercial tier - the best males are used within the nucleus while the remainder migrate to the commercial flocks, with no female migration, and (iv) as scheme iii but with female migration between tiers. For the latter two schemes, 100% of the nucleus animals are distributed over village flocks every 3 years. The nucleus is then replaced by a new batch of selected males and females from the village flocks obtained through ‘interactive cycling screening’, based on ‘picking the best phenotype’ in the commercial flocks. Single trait selection was considered, and based on estimated breeding value, using either best linear unbiased prediction (BLUP) or the individual’s phenotype as a deviation from contemporaries in the same flock, year and season. The results showed that genetic merit increased slightly and inbreeding decreased significantly with increase in nucleus size. For instance, with BLUP selection and trait measurement on both sexes, and first record established at year 2, a nucleus size of 100 dams with 50 dams mated to each sire resulted in genetic merit of 0.118 units and an average inbreeding coefficient of 0.119 while that with 500 dams gave a response of 0.134 with an average inbreeding coefficient of 0.037. Running one closed nucleus had a 6-24% advantage over a ‘ram circle’ in terms of genetic gain. Decreasing the dam to sire ratio was a simple way to avoid inbreeding in breeding schemes of small size, with very little compromise towards genetic gain or even an increase in the longer term. Relative to a two-tier nucleus (scheme i), cyclic screening of commercial animals for use in the nucleus gave an almost optimum genetic response, while the villagers acquired superior breeding stock in return as an incentive to participate in genetic improvement. Participation of farmers offers them a sense of ownership of the breeding programme, and is likely to make it more sustainable in the long-term. This study provides insight into the advantages and disadvantages of designed breeding structures, especially the ‘interactive cyclic’ breeding schemes, which should be useful in deciding breeding programmes to adopt for sheep in developing countries in the tropics. Keywords: Sheep, Breeding Structures, Selection, Tropic

    Genotype imputation for the prediction of genomic breeding values in non-genotyped and low-density genotyped individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is wide interest in calculating genomic breeding values (GEBVs) in livestock using dense, genome-wide SNP data. The general framework for genomic selection assumes all individuals are genotyped at high-density, which may not be true in practice. Methods to add additional genotypes for individuals not genotyped at high density have the potential to increase GEBV accuracy with little or no additional cost. In this study a long haplotype library was created using a long range phasing algorithm and used in combination with segregation analysis to impute dense genotypes for non-genotyped dams in the training dataset (S1) and for non-genotyped or low-density genotyped individuals in the prediction dataset (S2), using the 14<sup>th</sup> QTL-MAS Workshop dataset. Alternative low-density scenarios were evaluated for accuracy of imputed genotypes and prediction of GEBVs.</p> <p>Results</p> <p>In S1, females in the training population were not genotyped and prediction individuals were either not genotyped or genotyped at low-density (evenly spaced at 2, 5 or 10 Mb). The proportion of correctly imputed genotypes for training females did not change when genotypes were added for individuals in the prediction set whereas the number of correctly imputed genotypes in the prediction set increased slightly (S1). The S2 scenario assumed the complete training set was genotyped for all SNPs and the prediction set was not genotyped or genotyped at low-density. The number of correctly imputed genotypes increased with genotyping density in the prediction set. Accuracy of genomic breeding values for the prediction set in each scenario were the correlation of GEBVs with true breeding values and were used to evaluate the potential loss in accuracy with reduced genotyping. For both S1 and S2 the GEBV accuracies were similar when the prediction set was not genotyped and increased with the addition of low-density genotypes, with the increase larger for S2 than S1.</p> <p>Conclusions</p> <p>Genotype imputation using a long haplotype library and segregation analysis is promising for application in sparsely-genotyped pedigrees. The results of this study suggest that dense genotypes can be imputed for selection candidates with some loss in genomic breeding value accuracy, but with levels of accuracy higher than traditional BLUP estimated breeding values. Accurate genotype imputation would allow for a single low-density SNP panel to be used across traits.</p

    A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowing the phase of marker genotype data can be useful in genome-wide association studies, because it makes it possible to use analysis frameworks that account for identity by descent or parent of origin of alleles and it can lead to a large increase in data quantities via genotype or sequence imputation. Long-range phasing and haplotype library imputation constitute a fast and accurate method to impute phase for SNP data.</p> <p>Methods</p> <p>A long-range phasing and haplotype library imputation algorithm was developed. It combines information from surrogate parents and long haplotypes to resolve phase in a manner that is not dependent on the family structure of a dataset or on the presence of pedigree information.</p> <p>Results</p> <p>The algorithm performed well in both simulated and real livestock and human datasets in terms of both phasing accuracy and computation efficiency. The percentage of alleles that could be phased in both simulated and real datasets of varying size generally exceeded 98% while the percentage of alleles incorrectly phased in simulated data was generally less than 0.5%. The accuracy of phasing was affected by dataset size, with lower accuracy for dataset sizes less than 1000, but was not affected by effective population size, family data structure, presence or absence of pedigree information, and SNP density. The method was computationally fast. In comparison to a commonly used statistical method (fastPHASE), the current method made about 8% less phasing mistakes and ran about 26 times faster for a small dataset. For larger datasets, the differences in computational time are expected to be even greater. A computer program implementing these methods has been made available.</p> <p>Conclusions</p> <p>The algorithm and software developed in this study make feasible the routine phasing of high-density SNP chips in large datasets.</p

    A phasing and imputation method for pedigreed populations that results in a single-stage genomic evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Efficient, robust, and accurate genotype imputation algorithms make large-scale application of genomic selection cost effective. An algorithm that imputes alleles or allele probabilities for all animals in the pedigree and for all genotyped single nucleotide polymorphisms (SNP) provides a framework to combine all pedigree, genomic, and phenotypic information into a single-stage genomic evaluation.</p> <p>Methods</p> <p>An algorithm was developed for imputation of genotypes in pedigreed populations that allows imputation for completely ungenotyped animals and for low-density genotyped animals, accommodates a wide variety of pedigree structures for genotyped animals, imputes unmapped SNP, and works for large datasets. The method involves simple phasing rules, long-range phasing and haplotype library imputation and segregation analysis.</p> <p>Results</p> <p>Imputation accuracy was high and computational cost was feasible for datasets with pedigrees of up to 25 000 animals. The resulting single-stage genomic evaluation increased the accuracy of estimated genomic breeding values compared to a scenario in which phenotypes on relatives that were not genotyped were ignored.</p> <p>Conclusions</p> <p>The developed imputation algorithm and software and the resulting single-stage genomic evaluation method provide powerful new ways to exploit imputation and to obtain more accurate genetic evaluations.</p
    corecore