1,110 research outputs found

    Family Unification, Exotic States and Light Magnetic Monopoles

    Full text link
    Models with fermions in bifundamental representations can lead naturally to family unification as opposed to family replication. Such models typically predict (exotic) color singlet states with fractional electric charge, and magnetic monopoles with multiple Dirac charge. The exotics may be at the TeV scale, and relatively light magnetic monopoles (greater than about 10^7 GeV) can be present in the galaxy with abundance near the Parker bound. We focus on three family SU(4)XSU(3)XSU(3) models.Comment: 37 page

    Constraints on SUSY Lepton Flavour Violation by rare processes

    Full text link
    We study the constraints on flavour violating terms in low energy SUSY coming from several processes as li -> lj gamma, li -> lj lj lj and mu -> e in Nuclei. We show that a combined analysis of the processes allows us to extract additional information with respect to an individual analysis of all the processes. In particular, it makes possible to put bounds on sectors previously unconstrained by li -> lj gamma. We perform the analysis both in the mass eigenstate and in the mass insertion approximations clarifying the limit of applicability of these approximations.Comment: 23 pages, 15 figures. Typos corrected, several references and equations added. Results and conclusions completely unchanged. Accepted version for publication in JHE

    An assessment of the strength of knots and splices used as eye terminations in a sailing environment

    Get PDF
    Research into knots, splices and other methods of forming an eye termination has been limited, despite the fact that they are essential and strongly affect the performance of a rope. The aim of this study was to carry out a comprehensive initial assessment of the breaking strength of eye terminations commonly used in a sailing environment, thereby providing direction for further work in the field. Supports for use in a regular tensile testing machine were specially developed to allow individual testing of each sample and a realistic spread of statistical data to be obtained. Over 180 break tests were carried out on four knots (the bowline, double bowline, figure-of-eight loop and perfection loop) and two splices (three-strand eye splice and braid-on-braid splice). The factors affecting their strength were investigated. A statistical approach to the analysis of the results was adopted. The type of knot was found to have a significant effect on the strength. This same effect was seen in both types of rope construction (three-strand and braid-on-braid). Conclusions were also drawn as to the effect of splice length, eye size, manufacturer and rope diameter on the breaking strength of splices. Areas of development and further investigation were identified

    Screening of Dirac flavor structure in the seesaw and neutrino mixing

    Full text link
    We consider the mechanism of screening of the Dirac flavor structure in the context of the double seesaw mechanism. As a consequence of screening, the structure of the light neutrino mass matrix, m_\nu, is determined essentially by the structure of the (Majorana) mass matrix, M_S, of new super-heavy (Planck scale) neutral fermions S. We calculate effects of the renormalization group running in order to investigate the stability of the screening mechanism with respect to radiative corrections. We find that screening is stable in the supersymmetric case, whereas in the standard model it is unstable for certain structures of M_S. The screening mechanism allows us to reconcile the (approximate) quark-lepton symmetry and the strong difference of the mixing patterns in the quark and lepton sectors. It opens new possibilities to explain a quasi-degenerate neutrino mass spectrum, special ``neutrino'' symmetries and quark-lepton complementarity. Screening can emerge from certain flavor symmetries or Grand Unification.Comment: 27 pages, 3 figures; references added, discussion of the E6 model modifie

    Baryon Tri-local Interpolating Fields

    Full text link
    We systematically investigate tri-local (non-local) three-quark baryon fields with U_L(2)*U_R(2) chiral symmetry, according to their Lorentz and isospin (flavor) group representations. We note that they can also be called as "nucleon wave functions" due to this full non-locality. We study their chiral transformation properties and find all the possible chiral multiplets consisting J=1/2 and J=3/2 baryon fields. We find that the axial coupling constant |g_A| = 5/3 is only for nucleon fields belonging to the chiral representation (1/2,1)+(1,1/2) which contains both nucleon fields and Delta fields. Moreover, all the nucleon fields belonging to this representation have |g_A| = 5/3.Comment: 8 pages, 3 tables, accepted by EPJ

    Unital Quantum Channels - Convex Structure and Revivals of Birkhoff's Theorem

    Get PDF
    The set of doubly-stochastic quantum channels and its subset of mixtures of unitaries are investigated. We provide a detailed analysis of their structure together with computable criteria for the separation of the two sets. When applied to O(d)-covariant channels this leads to a complete characterization and reveals a remarkable feature: instances of channels which are not in the convex hull of unitaries can return to it when either taking finitely many copies of them or supplementing with a completely depolarizing channel. In these scenarios this implies that a channel whose noise initially resists any environment-assisted attempt of correction can become perfectly correctable.Comment: 31 page

    Some constraints on the Yukawa parameters in the neutrino modification of the Standard Model (nuMSM) and CP-violation

    Full text link
    The equations connecting elements of the Yukawa matrix to elements of the active neutrino mass matrix in the \nu MSM theory (an extension of the Standard Model by a singlet of three right-handed neutrinos) was analyzed, and explicit relations for the ratio of the Yukawa matrix elements through elements of the active neutrino mass matrix were obtained. This relation can be used for getting more accurate constraints on the model parameters. Particularly, with the help of the obtained results we investigated CP-violating phase in the \nu MSM theory. We demonstrate that even in the case when elements of the active neutrino mass matrix are real the baryon asymmetry can be generated also.Comment: 14 pages, 2 figures, many clarifications and references adde

    On the fraction of dark matter in charged massive particles (CHAMPs)

    Full text link
    From various cosmological, astrophysical and terrestrial requirements, we derive conservative upper bounds on the present-day fraction of the mass of the Galactic dark matter (DM) halo in charged massive particles (CHAMPs). If dark matter particles are neutral but decay lately into CHAMPs, the lack of detection of heavy hydrogen in sea water and the vertical pressure equilibrium in the Galactic disc turn out to put the most stringent bounds. Adopting very conservative assumptions about the recoiling velocity of CHAMPs in the decay and on the decay energy deposited in baryonic gas, we find that the lifetime for decaying neutral DM must be > (0.9-3.4)x 10^3 Gyr. Even assuming the gyroradii of CHAMPs in the Galactic magnetic field are too small for halo CHAMPs to reach Earth, the present-day fraction of the mass of the Galactic halo in CHAMPs should be < (0.4-1.4)x 10^{-2}. We show that redistributing the DM through the coupling between CHAMPs and the ubiquitous magnetic fields cannot be a solution to the cuspy halo problem in dwarf galaxies.Comment: 21 pages, 2 figures. To appear in JCA
    • …
    corecore