1,465 research outputs found

    Adaptations in plantarflexor muscle-tendon properties and their impact on gait in claudicants with peripheral arterial disease

    Get PDF
    Peripheral arterial disease (PAD) is a chronic atherosclerotic disease, primarily affecting the lower limbs. The associated intermittent claudication (IC) is a muscle pain/cramping sensation in the legs, primarily brought on by physical activity, such as walking, which can negatively affect daily function and quality of life. Poorer levels of lower-limb muscle strength are strong predictors for mortality and the plantarflexor muscles in particular are a frequent site of claudication pain, with previous literature also indicating their dysfunction during level gait. However, little is known about the size and architecture of these muscles, the quality of the in-series Achilles tendon or the factors that contribute to voluntary joint moments and how these relate to physical function in this population. The aim of this thesis was to determine the functional properties of the gastrocnemii muscles and Achilles tendon in order to make evidence-based clinical recommendations for specific exercise interventions for claudicants.A total of 23 participants (13 claudicants and 10 controls) took part in the study. Muscle-tendon dimensions and architecture, tendon properties, activation patterns and muscle strength, power and quality (specific tension) were assessed be integrating ultrasound imaging, electromyography and dynamometry. Stair gait biomechanics were analysed using 3D motion capture as indicators of whole body physical function. Within the claudicant cohort, disease severity was determined using the ankle brachial pressure index and walking performance assessed by a modified six-minute walk test. Average post-exercise ankle brachial pressure index of the claudicating-limbs were 0.55±0.21 with initial (onset of claudication pain) and absolute (maximal claudication pain) walking distances of 105±45m and 265±136m, respectively.The first study investigated the relationships between the resting architecture of the gastrocnemii and functional properties of the Achilles tendon with disease severity and walking endurance. Worse disease severity was significantly associated with longer fascicle: tendon length ratios in both lateral (R=-.789, P=.001) and medial (R=-.828, P=<.001) gastrocnemius, and increased tendon hysteresis (R=-.740, P=.006). This suggests that the Achilles tendon has undergone deleterious changes and the muscle has adopted a structure designed to compensate for this. However, the concomitant associations with poorer walking endurance indicate this mechanism is not effective. Walking endurance could also be explained by lateral and medial gastrocnemius pennation angle, maximum tendon force, tendon hysteresis and disease severity (R2=~0.6). The direction of coefficients within these models suggests that improving tendon properties and increasing strength, but without increasing pennation angle, would be beneficial for walking endurance. Thus, eccentric resistance training may be an effective exercise intervention.The second study investigated relationships between static and dynamic muscle quality with disease severity and walking endurance. The power-producing capabilities of claudicants’ plantarflexors (both the claudicating/painful limb and asymptomatic limb) were impaired compared to healthy controls, particularly at high contraction velocities (24% difference at 180°/s). This could be explained by some reduction in gastrocnemii muscle quality and a greater reliance on the prominently type I fibred soleus muscle. As reduced dynamic capability of the plantarflexor muscles was associated with disease severity (R=.541, P=.037) and walking endurance (R=.689, P=.006), high velocity resistance training of the plantarflexor muscles appears important to maintain functional performance.The third and fourth studies investigated the functionally challenging daily tasks of stair ascent and stair descent, respectively. During stair ascent, plantarflexor moments were similar in claudicants compared to healthy controls, indicating the muscle could meet the strength demands of this task. We also observed that ankle angular velocity at the instant of peak moment, peak ankle power generation, as well as propulsive and vertical forces, were all reduced during forward continuance in the claudicating-limb group. It seems that claudicants possess adequate levels of strength when moving more slowly but are unable to remain strong when moving more quickly, therefore it could be suggested that the slower walking speed is a means to allow claudicants to operate within safer limits relative to their maximal strength capacity. This provides further evidence, in a functional context, of the velocity-dependent limitations of the plantarflexors detected in study two. During stair descent we hypothesised that the task demands would be redistributed away from the affected plantarflexors towards the muscles surrounding the hips and knees. Instead, the claudicants placed a greater reliance on the plantarflexors compared to healthy controls (40% vs 28% of plantarflexor contribution to peak support moment). Additionally, a unique hip extensor strategy was exposed during weight acceptance that was adopted by 73% of the claudicating-limb group, which was also associated with increased disease severity. However this was not a mechanism to reduce the functional demands on the plantarflexors but rather to reduce demands on the knee musculature. These data indicate the claudicants were relying heavily on the functionally limited plantarflexors to absorb the falling body mass during weight acceptance in stair descent, which may pose an increased risk of falling.This thesis has identified important changes in the structure and quality of the gastrocnemii muscles and the properties and function of the Achilles tendon, that appear to influence whole body function during demanding and risky physical activities (stair negotiation) that necessitate alternate strategies. Taken as a whole, it is clear that high-velocity and eccentric resistance training would likely improve the musculoskeletal characteristics of claudicants, increase walking endurance and facilitate safe stair negotiation

    Interpreting sources of variation in clinical gait analysis: A case study

    Get PDF
    © 2016 Objective To illustrate and discuss sources of gait deviations (experimental, genuine and intentional) during a gait analysis and how these deviations inform clinical decision making. Methods A case study of a 24-year old male diagnosed with Alkaptonuria undergoing a routine gait analysis. A 3D motion capture with the Helen-Hayes marker set was used to quantify lower-limb joint kinematics during barefoot walking along a 10 m walkway at a self-selected pace. Additional 2D video data were recorded in the sagittal and frontal plane. The patient reported no aches or pains in any joint and described his lifestyle as active. Results Temporal-spatial parameters were within normal ranges for his age and sex. Three sources of gait deviations were identified; the posteriorly rotated pelvis was due to an experimental error and marker misplacement, the increased rotation of the pelvis in the horizontal plane was genuine and observed in both 3D gait curves and in 2D video analysis, finally the inconsistency in knee flexion/extension combined with a seemingly innocuous interest in the consequences of abnormal gait suggested an intentional gait deviation. Conclusions Gait analysis is an important analytical tool in the management of a variety of conditions that negatively impact on movement. Experienced gait analysts have the ability to recognise genuine gait adaptations that forms part of the decision-making process for that patient. However, their role also necessitates the ability to identify and correct for experimental errors and critically evaluate when a deviation may not be genuine

    The effects of exercise to promote quality of life in individuals with traumatic brain injuries: a systematic review

    Get PDF
    © 2020 Taylor & Francis Group, LLC. Objective: To systematically review the effects of exercise interventions that may enhance quality of life (QOL) in individuals with traumatic brain injury (TBI). Methods: A systematic search was conducted using five databases up to April 2018. Studies were included if QOL was quantified following an exercise programme for people with a TBI. Methodological quality was assessed using a validated scoring checklist. Two independent reviewers assessed study inclusion and methodological quality. Results: Thirteen studies met the inclusion criteria (seven RCTs, six non-RCTs). The median total scores for the quality assessment tool were 26.1 (RCTs), and 21.3 (non-RCTs), out of 33. Eight out of the 13 studies reported improved QOL following an exercise programme. The duration of the interventions varied from 8-12weeks. The most common programmes involved moderate to vigorous exercise; with a frequency and duration of 3–5 times/week for 30–60minutes. Conclusion: Due to the diversity of the exercise training interventions, heterogeneity of patient characteristics, multitude of QOL instruments and outcome domains assessed, it was not possible to draw any definitive conclusion about the effectiveness of exercise interventions. However, this review identified positive trends to enhance various aspects of QOL measured using a range of assessment tools

    Identifying signature whistles from recordings of groups of unrestrained bottlenose dolphins (Tursiops truncatus)

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Marine Mammal Science 29 (2013): 109–122, doi:10.1111/j.1748-7692.2011.00549.x.Bottlenose dolphins (Tursiops truncatus) have individually-distinctive signature whistles. Each individual dolphin develops its own unique frequency modulation pattern and uses it to broadcast its identity. However, underwater sound localization is challenging, and researchers have had difficulties identifying signature whistles. The traditional method to identify them involved isolating individuals. In this context, the signature whistle is the most commonly produced whistle type of an animal. However, most studies on wild dolphins cannot isolate animals. We present a novel method, SIGID, that can identify signature whistles in recordings of groups of dolphins recorded via a single hydrophone. We found that signature whistles tend to be delivered in bouts with whistles of the same type occurring within 1-10 s of each other. Non-signature whistles occur over longer or shorter periods, and this distinction can be used to identify signature whistles in a recording. We tested this method on recordings from wild and captive bottlenose dolphins and show thresholds needed to identify signature whistles reliably. SIGID will facilitate the study of signature whistle use in the wild, signature whistle diversity between different populations, and potentially allow signature whistles to be used in mark-recapture studies.This work was supported by Dolphin Quest, National Oceanic and Atmospheric Administration (NOAA) Fisheries Service, Disney’s Animal Programs and Mote Marine Laboratory (R.S.W.), Harbor Branch Oceanographic Institute (L.S.S. and R.S.W.), and a Royal Society University Research Fellowship (V.M.J.)

    Bias and Misrepresentation of Science Undermines Productive Discourse on Animal Welfare Policy: A Case Study

    Get PDF
    Reliable scientific knowledge is crucial for informing legislative, regulatory, and policy decisions in a variety of areas. To that end, scientific reviews of topical issues can be invaluable tools for informing productive discourse and decision-making, assuming these reviews represent the target body of scientific knowledge as completely, accurately, and objectively as possible. Unfortunately, not all reviews live up to this standard. As a case in point, Marino et al.’s review regarding the welfare of killer whales in captivity contains methodological flaws and misrepresentations of the scientific literature, including problematic referencing, overinterpretation of the data, misleading word choice, and biased argumentation. These errors and misrepresentations undermine the authors’ conclusions and make it impossible to determine the true state of knowledge of the relevant issues. To achieve the goal of properly informing public discourse and policy on this and other issues, it is imperative that scientists and science communicators strive for higher standards of analysis, argumentation, and objectivity, in order to clearly communicate what is known, what is not known, what conclusions are supported by the data, and where we are lacking the data necessary to draw reliable conclusions

    Hair cortisol and childhood trauma predict psychological therapy response in depression and anxiety disorders

    Full text link
    Objective Around 30–50% of patients with depression and anxiety disorders fail to respond to standard psychological therapy. Given that cortisol affects cognition, patients with altered hypothalamic–pituitary–adrenal (HPA) axis functioning may benefit less from such treatments. To investigate this, reliable pretreatment cortisol measures are needed. Method N = 89 outpatients with depression and anxiety disorders were recruited before undergoing therapy within an Improving Access to Psychological Therapies (IAPT) service. Three-month hair cortisol was determined, and the Childhood Trauma Questionnaire was administered. Patients were classified as responders if they showed significant decreases in depression (>= 6 points on the Patient Health Questionnaire) or anxiety (>= 5 points on the Generalised Anxiety Disorder Scale). Results Non-responders in terms of depression (57%) had lower pretreatment hair cortisol concentrations (P = 0.041) and reported more physical abuse (P = 0.024), sexual abuse (P = 0.010) and total trauma (P = 0.039) when compared to responders. Non-responders in terms of anxiety (48%) had lower pretreatment hair cortisol (P = 0.027), as well as higher levels of emotional abuse (P = 0.034), physical abuse (P = 0.042) and total trauma (P = 0.048). Conclusion If future research confirms hair cortisol to be a predictor of psychological therapy response, this may prove a useful clinical biomarker which identifies a subgroup requiring more intensive treatment

    Multi-network-based diffusion analysis reveals vertical cultural transmission of sponge tool use within dolphin matrilines

    Full text link
    Behavioural differences among social groups can arise from differing ecological conditions, genetic predispositions and/or social learning. In the past, social learning has typically been inferred as responsible for the spread of behaviour by the exclusion of ecological and genetic factors. This ‘method of exclusion’ was used to infer that ‘sponging’, a foraging behaviour involving tool use in the bottlenose dolphin (Tursiops aduncus) population in Shark Bay, Western Australia, was socially transmitted. However, previous studies were limited in that they never fully accounted for alternative factors, and that social learning, ecology and genetics are not mutually exclusive in causing behavioural variation. Here, we quantified the importance of social learning on the diffusion of sponging, for the first time explicitly accounting for ecological and genetic factors, using a multi-network version of ‘network-based diffusion analysis'. Our results provide compelling support for previous findings that sponging is vertically socially transmitted from mother to (primarily female) offspring. This research illustrates the utility of social network analysis in elucidating the explanatory mechanisms behind the transmission of behaviour in wild animal populations
    • …
    corecore