4,360 research outputs found

    Bounds for DNA codes with constant GC-content

    Full text link
    We derive theoretical upper and lower bounds on the maximum size of DNA codes of length n with constant GC-content w and minimum Hamming distance d, both with and without the additional constraint that the minimum Hamming distance between any codeword and the reverse-complement of any codeword be at least d. We also explicitly construct codes that are larger than the best previously-published codes for many choices of the parameters n, d and w.Comment: 13 pages, no figures; a few references added and typos correcte

    Daily Scheduled High Fat Meals Moderately Entrain Behavioral Anticipatory Activity, Body Temperature, and Hypothalamic c-Fos Activation

    Get PDF
    When fed in restricted amounts, rodents show robust activity in the hours preceding expected meal delivery. This process, termed food anticipatory activity (FAA), is independent of the light-entrained clock, the suprachiasmatic nucleus, yet beyond this basic observation there is little agreement on the neuronal underpinnings of FAA. One complication in studying FAA using a calorie restriction model is that much of the brain is activated in response to this strong hunger signal. Thus, daily timed access to palatable meals in the presence of continuous access to standard chow has been employed as a model to study FAA in rats. In order to exploit the extensive genetic resources available in the murine system we extended this model to mice, which will anticipate rodent high fat diet but not chocolate or other sweet daily meals (Hsu, Patton, Mistlberger, and Steele; 2010, PLoS ONE e12903). In this study we test additional fatty meals, including peanut butter and cheese, both of which induced modest FAA. Measurement of core body temperature revealed a moderate preprandial increase in temperature in mice fed high fat diet but entrainment due to handling complicated interpretation of these results. Finally, we examined activation patterns of neurons by immunostaining for the immediate early gene c-Fos and observed a modest amount of entrainment of gene expression in the hypothalamus of mice fed a daily fatty palatable meal

    Linear constructions for DNA codes

    Get PDF
    AbstractIn this paper we translate in terms of coding theory constraints that are used in designing DNA codes for use in DNA computing or as bar-codes in chemical libraries. We propose new constructions for DNA codes satisfying either a reverse-complement constraint, a GC-content constraint, or both, that are derived from additive and linear codes over four-letter alphabets. We focus in particular on codes over GF(4), and we construct new DNA codes that are in many cases better (sometimes far better) than previously known codes. We provide updated tables up to length 20 that include these codes as well as new codes constructed using a combination of lexicographic techniques and stochastic search

    Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease

    Get PDF
    Key challenges faced by all cells include how to spatiotemporally organize complex biochemistry and how to respond to environmental fluctuations. The budding yeast Saccharomyces cerevisiae harnesses alternative protein folding mediated by yeast prion domains (PrDs) for rapid evolution of new traits in response to environmental stress. Increasingly, it is appreciated that low complexity domains similar in amino acid composition to yeast PrDs (prion-like domains; PrLDs) found in metazoa have a prominent role in subcellular cytoplasmic organization, especially in relation to RNA homeostasis. In this review, we highlight recent advances in our understanding of the role of prions in enabling rapid adaptation to environmental stress in yeast. We also present the complete list of human proteins with PrLDs and discuss the prevalence of the PrLD in nucleic-acid binding proteins that are often connected to neurodegenerative disease, including: ataxin 1, ataxin 2, FUS, TDP-43, TAF15, EWSR1, hnRNPA1, and hnRNPA2. Recent paradigm-shifting advances establish that PrLDs undergo phase transitions to liquid states, which contribute to the structure and biophysics of diverse membraneless organelles. This structural functionality of PrLDs, however, simultaneously increases their propensity for deleterious protein-misfolding events that drive neurodegenerative disease. We suggest that even these PrLD-misfolding events are not irreversible and can be mitigated by natural or engineered protein disaggregases, which could have important therapeutic applications. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease

    Stress granules as crucibles of ALS pathogenesis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal human neurodegenerative disease affecting primarily motor neurons. Two RNA-binding proteins, TDP-43 and FUS, aggregate in the degenerating motor neurons of ALS patients, and mutations in the genes encoding these proteins cause some forms of ALS. TDP-43 and FUS and several related RNA-binding proteins harbor aggregation-promoting prion-like domains that allow them to rapidly self-associate. This property is critical for the formation and dynamics of cellular ribonucleoprotein granules, the crucibles of RNA metabolism and homeostasis. Recent work connecting TDP-43 and FUS to stress granules has suggested how this cellular pathway, which involves protein aggregation as part of its normal function, might be coopted during disease pathogenesis

    Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease

    Get PDF
    Prion diseases are fatal, transmissible, neurodegenerative diseases caused by the misfolding of the prion protein (PrP). At present, the molecular pathways underlying prion-mediated neurotoxicity are largely unknown. We hypothesized that the transcriptional regulator of the stress response, heat shock factor 1 (HSF1), would play an important role in prion disease. Uninoculated HSF1 knockout (KO) mice used in our study do not show signs of neurodegeneration as assessed by survival, motor performance, or histopathology. When inoculated with Rocky Mountain Laboratory (RML) prions HSF1 KO mice had a dramatically shortened lifespan, succumbing to disease ≈20% faster than controls. Surprisingly, both the onset of home-cage behavioral symptoms and pathological alterations occurred at a similar time in HSF1 KO and control mice. The accumulation of proteinase K (PK)-resistant PrP also occurred with similar kinetics and prion infectivity accrued at an equal or slower rate. Thus, HSF1 provides an important protective function that is specifically manifest after the onset of behavioral symptoms of prion disease

    Facioscapulohumeral muscular dystrophy: Are telomeres the end of the story

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is a progressive myopathy with a relatively late age of onset (usually in the late teens) compared with Duchenne and many other muscular dystrophies. The current FSHD disease model postulates that contraction of the D4Z4 array at chromosome 4q35 leads to a more open chromatin conformation in that region and allows transcription of the DUX4 gene. DUX4 mRNA is stable only when transcribed from certain haplotypes that contain a polyadenylation signal. DUX4 protein is hypothesized to cause FSHD by mediating cytotoxicity and impairing skeletal muscle differentiation. We recently showed in a cell culture model that DUX4 expression is regulated by telomere length, suggesting that telomere shortening during aging may be partially responsible for the delayed onset and progressive nature of FSHD. We here put our data in the context of other recent findings arguing that progressive telomere shortening may play a critical role in FSHD but is not the whole story and that the current disease model needs additional refinement

    Predicting co-complexed protein pairs using genomic and proteomic data integration

    Get PDF
    BACKGROUND: Identifying all protein-protein interactions in an organism is a major objective of proteomics. A related goal is to know which protein pairs are present in the same protein complex. High-throughput methods such as yeast two-hybrid (Y2H) and affinity purification coupled with mass spectrometry (APMS) have been used to detect interacting proteins on a genomic scale. However, both Y2H and APMS methods have substantial false-positive rates. Aside from high-throughput interaction screens, other gene- or protein-pair characteristics may also be informative of physical interaction. Therefore it is desirable to integrate multiple datasets and utilize their different predictive value for more accurate prediction of co-complexed relationship. RESULTS: Using a supervised machine learning approach – probabilistic decision tree, we integrated high-throughput protein interaction datasets and other gene- and protein-pair characteristics to predict co-complexed pairs (CCP) of proteins. Our predictions proved more sensitive and specific than predictions based on Y2H or APMS methods alone or in combination. Among the top predictions not annotated as CCPs in our reference set (obtained from the MIPS complex catalogue), a significant fraction was found to physically interact according to a separate database (YPD, Yeast Proteome Database), and the remaining predictions may potentially represent unknown CCPs. CONCLUSIONS: We demonstrated that the probabilistic decision tree approach can be successfully used to predict co-complexed protein (CCP) pairs from other characteristics. Our top-scoring CCP predictions provide testable hypotheses for experimental validation

    The Man of La Mancha press release

    Get PDF
    April 7-11 and 14-18, 1982. University Theatre, Viertes Haus 100. Book by Dale Wasserman. Lyrics by Joe Darion. Music by Mitch Leigh. Based on the novel Don Quixote by Miguel de Cervantes. Directed by Therald Todd. Music Director Joseph Rohm. Choreography by Lee Brooke and Sue Steele. Costumes by Jaqueline Easter. Set design by H. Paul Mazer. Starring Kurt E. Payne as Captain of the Inquisition; R. J. Musser as Miguel de Cervantes, Don Quixote, Alonso Quijana; J. R. Vega as Sancho Panza.https://digitalcommons.fiu.edu/theatre_posters/1125/thumbnail.jp
    • …
    corecore