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Abstract

In this paperwe translate in terms of coding theory constraints that are used in designingDNAcodes
for use in DNA computing or as bar-codes in chemical libraries. We propose new constructions for
DNA codes satisfying either a reverse-complement constraint, aGC-content constraint, or both, that
are derived from additive and linear codes over four-letter alphabets. We focus in particular on codes
overGF(4), and we construct new DNA codes that are in many cases better (sometimes far better)
than previously known codes. We provide updated tables up to length 20 that include these codes as
well as new codes constructed using a combination of lexicographic techniques and stochastic search.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of designing DNA codes (sets of words of fixed lengthnover the alphabets
{A,C,G, T }) that satisfy certain combinatorial constraints has applications for reliably
storing and retrieving information in synthetic DNA strands. These codes can be used in
particular for DNA computing[1] or as molecular bar-codes [8,25].
In [13,17,20,22], four different constraints on DNA codes are considered: the Hamming

constraint for a distanced, the reverse-complement constraint, the reverse constraint and
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the fixedGC-content constraint. The purpose of the first three constraints is to make non-
desirable hybridizations between different DNA strands less likely to happen. The fixed
GC-content constraint is used to obtain similar melting temperatures[13].
Bounds for codes satisfying these constraints are presented in [17,22] and several con-

structions using stochastic search, a template-map strategy, genetic algorithms and lexico-
graphic codes have been proposed [11,13,17,20,26,27]. As discussed in Section 4, there are
parameter ranges for which these approaches are not entirely satisfactory.
In this paper we translate all of these constraints in terms of coding theory [21]. This

point of view allows us to use classical coding results and leads to the construction of new
good DNA codes that are in almost all cases better than previously known constructions
for lengthn greater than 10 and minimum distanced up to roughlyn/2. Moreover, these
constructions are easily obtained and are scalable. Note that previous results were obtained
in [23] with codes but only for reversible cyclic codes and asymptotic lengths.
It should be noted that the constraints we consider do not address certain issues related

to hybridization which may be important in practical applications, for example insensitiv-
ity to frame-shifts, the avoidance of secondary structure, and the use of a more accurate
model of melting temperature, see [7] for a survey of approaches to DNA word-design that
address these and other issues. Some of these issues may be addressed computationally
as a post-processing step (cf. Section 4); codes may also be screened experimentally [4].
In applications in which codewords (possibly of variable length) concatenate, additional
constraints become important, some of which can be cast in coding-theoretic terms (e.g.
[2,18]) and others which have been investigated from the perspective of formal languages
(e.g. [16]) and symbolic dynamics (e.g. [10]).
The paper is organized as follows: in Section 2we recall basic notions for DNA codes and

linear codes; in Section 3 we translate the constraints on DNA codes into coding-theoretic
terms; in Section 4 we detail our constructions; and in Section 5 we give tables of the
best known DNA codes of length 20 or less satisfying the fixedGC-content constraint or
the fixedGC-content constraint together with theRCconstraint. These tables include linear
constructions and new codes obtained through a combination of lexicographic constructions
and stochastic search.

2. Background on linear codes and DNA codes

A DNA code of lengthn is a set of codewords(x1, . . . , xn) with xi ∈ {A,C,G, T }
(representing the four nucleotides in DNA). We use a hat to denote the Watson–Crick
complement of a nucleotide, sôA = T , T̂ = A, Ĉ = G, andĜ = C.
TheHamming distanceH(x, y) between two codewords is the number of coordinates

in which x and y are distinct. Thereverseof a codewordx = (x1, . . . , xn) is denoted
by xR = (xn, . . . , x1), and thereverse-complementof x = (x1, . . . , xn) is denoted by
xRC = (x̂n, . . . , x̂1).
In this paper we shall identify codes over{A,C,G, T } with codes over other four-letter

alphabetsK, whereK is eitherGF(4) = {0,�, �̄,1} or Z4 = Z/4Z = {0,1,3,2}. The
four symbols in{A,C,G, T } are identified with the four symbols inK in the orders given
above, so that̂x = x + 1 for x ∈ GF(4) andx̂ = x + 2 for x ∈ Z4.
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We refer to[15,21] for a general background on error-correcting codes.An additive code
C overK of lengthn is an additive subgroup ofKn. If, moreover,C is a linear subspace
of Kn the code is said to be linear. A[n, k, d] code denotes a code of lengthn, dimension
k and minimum distanced over a given field. Note that in this paper we mainly consider
linear codes overGF(4), although some theorems are valid over different alphabets. We
denote the complete weight enumerator of a codeC overGF(4) by CWEC(x, y, z, t) =∑

c∈C xn0(c)yn1(c)zn�(c)tn�̄(c), wherenk(c) is the number of occurrences ofk ∈ GF(4) in a
codewordc. We denote byGCWC(x, y) = CWEC(x, x, y, y) theGC-weight enumerator
of C, i.e., the weight enumerator that counts the number of coordinates in{0,1} and{�, �̄},
and we denote byBWC(x, y) the weight enumerator of the binary subcode ofC (i.e., the
subcode ofC consisting of those words ofC whose coordinates are either ‘0’ or ‘1’).
The dual of a codeC of lengthnoverK is defined asC⊥ = {x ∈ Kn|x · y = 0 for all y ∈

C}, wherex · y is the standard inner productx1y1+· · · xnyn forK = Z4 and the Hermitian
inner productx1ȳ1 + · · · xnȳn for K = GF(4).
Two codes overK are permutation-equivalent if one can be obtained from the other by

permuting the columns (coordinates), and are equivalent if one can be obtained from the
other by permuting the columns and multiplying columns by invertible elements ofK.
Thepermutationgroupofacodeof lengthn is thegroupofpermutationsof{1,2,3, . . . , n}

that, when applied to the columns of the code, maps the code to itself. A permutation that
is its own inverse is called an involution.

3. Constraints on DNA codes

3.1. Hamming distance constraint

The Hamming distance constraint for a DNA codeC is thatH(x, y)�d for all x, y ∈ C
with x �= y, for some prescribed minimum distanced. This constraint will be enforced in
all of the codes we consider, in addition to some combination of the constraints described
below.

3.2. Reverse constraint

The reverse constraint is thatH(xR, y)�d for all x, y ∈ C, includingx = y. It is useful
as an intermediate step in constructing codes with the reverse-complement constraint. A
natural idea is to start with a code that is fixedby the reverse permutationR, which exchanges
columni and columnn + 1− i for 1� i�n.
This idea is generalized by the following simple lemma:

Lemma 1. LetC′ be a code of length n such that:
– n = 2k is even andC′ has a fixed-point free involution in its permutation group(i.e., a
permutation of the form(a1, a2) · · · (a2k−1, a2k) which leaves no column unchanged);
or

– n = 2k+1 is odd andC′ has a one-point-fixed involution in its permutation group(i.e.,a
permutation of the form(a1, a2) · · · (a2k−1, a2k) which leaves one column unchanged).
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ThenC′ is permutation-equivalent to a codeC that has the reverse permutation R in its
permutation group.

Proof. SupposeC′ is a code of even lengthn = 2k with a fixed-point free involution
(a1, a2) · · · (a2k−1, a2k). Consider the permutationp that sends columna2i−1 to columni
and columna2i to column 2n+ 1− i, for 1� i�k. The argument for oddn is similar. �

The linear reverse constructionis then defined as follows:
Let C′ be a code overK with minimum distanced which possesses in its permutation

group a fixed-point free involution (forn even) or a one-point-fixed involution (forn odd).
Then by Lemma1,C′ is permutation-equivalent to a codeC that is fixed byR. Now sinceR
is an involution,C can be written as a disjoint unionC = C0∪C1∪C2, whereC0 is the set of
codewords inC that are unchanged byR, andC1 andC2 are two sets that are interchanged by
R.A set satisfying the reverse constraint together with the Hamming constraintd is obtained
by takingC1 or C2. Note that of course the setsC1 andC2 are not unique.
In the case of linear codes it is easy to compute the subcodeC0. We associate to any

reverse permutationRof lengthn a codeCR defined by the following generator matrixGR:
– for n even

GR =



1 0 0 · · · · · · 0 0 1
0 1 0 · · · · · · 0 1 0

· · · · · · · · · · · ·
0 · · · 0 1 1 0 · · · 0




– for n odd

GR =




1 0 0 · · · · · · 0 0 1
0 1 0 · · · · · · 0 1 0

· · · · · · · · · · · ·
0 · · · 0 1 0 1 0 · · · 0
0 · · · · · · 0 1 0 · · · · · · 0




Now obviously|C1| = |C|−|C0|
2 , and|C0| can be computed by the following proposition:

Proposition 1. If C is a code that is fixed by the reverse permutation R, then the subcode
C0 of C consisting of the codewords that are unchanged by R is obtained as the intersection
of C and the codeCR.

Proof. A codewordc = (c1, . . . , cn) is unchanged byR if and only if ci = cn+1−i for
1� i�n, which is equivalent to havingc ∈ CR. �

Note that although we mainly use this construction for linear codes overGF(4), the
construction can be generalized to additive codes overGF(4) simply by considering the
matrixGR + �GR rather thanGR.
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3.3. Reverse-complement constraint

The reverse-complement constraint is thatH(xRC, y)�d for all x, y ∈ C, including
x = y. Again the mapx → xRC is an involution, although it is not a linear map. To
construct codes satisfying the reverse-complement constraint, it can be useful to begin with
codes overK that contains a special codeword we denote by 1K , which is the all-one word
for K = GF(4), and is the all-two word forK = Z4.
Starting from a codeC′ that contains 1K and a fixed-point free or a one-point-fixed

involution, one may construct a codeC that is equivalent toC′ and is of the formC =
C0 ∪ C1 ∪ C2, whereC0 is fixed pointwise under the reverse-complement operation andC1
andC2 are interchanged by this operation.
The condition that a code contains 1K may be avoided in some cases. As in[22], we

let AR
4 (n, d) denote the maximum cardinality of a DNA code of lengthn that satisfies

the Hamming distance and reverse constraints for a givend, and letARC
4 (n, d) denote the

maximum cardinality of a DNA code of lengthn that satisfies the Hamming distance and
reverse-complement constraints for a givend. In [22] the following close relationship is
given for evenn:

ARC
4 (n, d) = AR

4 (n, d).

This result is obtained through a construction in which the firstn/2 coordinates of each
codeword are replaced by their complements. Unfortunately, for oddn this constructionmay
decrease the minimum distance by one, giving the inequalityARC

4 (n, d)�AR
4 (n, d − 1) in

[22]. Here we prove an inequality for oddn that is often tighter:

Proposition 2. For odd n,

ARC
4 (n, d)� AR

4 (n, d)

2
.

Proof. Suppose thatC is a DNA code of sizeAR
4 (n, d) satisfying the Hamming distance

and reverse constraints for a givend, with n = 2k + 1 odd. Letx → x∗ denote the map
that complements the firstk = �n2� coordinates of a codewordx. Clearly,H(x∗, y∗) =
H(x, y) for all x, y ∈ C. We also haveH((x∗)RC, y∗) = H(xR, y) + 1 if xk+1 = yk+1;
H((x∗)RC, y∗) = H(xR, y)−1 if xk+1 = ŷk+1; andH((x∗)RC, y∗) = H(xR, y)otherwise.
Now consider the subcodesCA, CC, CG andCT of C consisting of codewords in which the
(k+1)st coordinate isA,C,G andT, respectively. Clearly,|CA|+|CC |+|CG|+|CT | = |C|
and one (sayC′) of the two codesCA ∪ CC or CG ∪ CT has at leastAR

4 (n, d)/2 codewords.
Note thatwenever havexk+1 = ŷk+1 for x, y ∈ C′, soH((x∗)RC, y∗)�H(xR, y) for x, y ∈
C′. ThereforeC′∗ = {c∗|c ∈ C′} satisfies the Hamming distance and reverse-complement
constraints for the givend, soARC

4 (n, d)� |C′∗|�AR
4 (n, d)/2. �

Remark 1. For oddn, if the codeC is linear and the middle column is not alwaysA (or 0),
then|CA| = |CC | = |CG| = |CT | = |C|/4; equivalent results hold for additive codes.
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Remark 2. Whenstarting froma linear (or additive) code, the construction describedabove
in which one takes the complement of the first half of the coordinates does not in general
preserve the linearity (or additivity) of the code; nevertheless, it is still possible to apply
the Linear Reverse Construction and the method of the previous subsection to compute the
size of|C0|.

3.4. Fixed GC-content constraint

TheGC-content constraint is that each codewordx ∈ C has the sameGC-weight. Starting
from a linear code, the question is how to compute theGC-weight enumerator. It can of
course be obtained by specializing the complete weight enumerator, but this turns out to be
quickly time consuming, since finding the complete weight enumerator may in itself take a
long time.We propose in the following a simple way to compute theGC-weight enumerator
of a code overGF(4) (additive or linear).

Theorem 1. LetC be a linear code overGF(4). Then

GCWC(x, y) = 1

|C⊥|BWC⊥(2(x + y),2(x − y)).

Proof. GCWC(x, y) = CWEC(x, x, y, y) = 1
|C⊥ |CWEC⊥(2(x + y),2(x − y),0,0) =

1
|C⊥ |BWC⊥(2(x + y),2(x − y)). �

Proposition 3. LetC bea linear codeoverGF(4).Then the binary subcodeofC is obtained
as the intersection of the two binary codesC⊥

1 andC⊥
2 , whereC1 andC2 are generated by

the binary matricesH1 andH2 satisfyingH1+�H2 = H , for H a generator matrix ofC⊥.

Proof. Let c be an element of the binary subcode ofC and letH be a generator matrix of
C⊥. ThenH can be uniquely written asH = H1 + �H2 with H1 andH2 binary matrices.
Let C1 andC2 be the binary codes generated byH1 andH2. Thenc is in the binary subcode
of C if and only ifH1x

t = H2x
t = 0, i.e., if and only ifc ∈ C⊥

1 ∩ C⊥
2 . �

Now since one is interested in finding as many codewords as possible with the sameGC-
weight, one may prefer evenGC-weight enumerators, because these contain on average
twice asmany codewords for each evenGC-weight than non-evenGC-weight enumerators.
A simple way to construct such codes is given in the following proposition.

Proposition 4. LetC be a code overGF(4). If the all-one vector belongs toC⊥, then the
GC-weight enumerator ofC is even(i.e., has only even weights).

Proof. By Theorem1, theGC-weight enumerator ofC is 1
|C⊥|BWC⊥(2(x + y),2(x − y)).

LetW = ∑n
i=0Aix

n−iyi be the binary weight enumeratorBWC⊥ . Let Pi(x, y) = (x +
y)n−i (x − y)i + (x + y)i(x − y)n−i . ThenPi(x, y) = Pi(x,−y), andPi(x, y) is even in
y. Now if the all-one vector is inC⊥, Ai = An−i and the result follows. �
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The technique for turning a code satisfying the reverse constraint into a code satisfy-
ing the reverse-complement constraint generalizes to codes with fixedGC-content. Let
A
GC,RC
4 (n, d,w) denote the maximum size of a DNA code of lengthnwith constantGC-

contentw that satisfies the Hamming distance andRC constraints for a givend, and let
A
GC,R
4 (n, d,w) denote the maximum size of a DNA code of lengthn with constantGC-

contentw that satisfies the Hamming distance and reverse constraints for a givend. It is
proved in[17] thatAGC,RC

4 (n, d,w) = A
GC,R
4 (n, d,w) for evenn, andAGC,RC

4 (n, d,w)�
A
GC,R
4 (n, d − 1, w) for oddn. It is also straightforward to adapt the proof of Proposition 2

to show the following.

Proposition 5. For odd n,

A
GC,RC
4 (n, d,w)� A

GC,R
4 (n, d,w)

2
.

4. Constructions

Constructions for DNA codes with constantGC-content (with and without theRCcon-
straint) are given in[17,20,26,27]. But the ‘template-map’ constructions in [20] (ford ≈
n/2) are suboptimal forn > 8 (see [17]), and the lexicographic constructions in [17] be-
come impractical forn around 20 (or less for smalld). Stochastic local search methods as
in [26,27] are appealing in that they have access to more of the space of possible codes than
lexicographic constructions, and are suitable for largern, particularly whend is large. For
smallerd, the size of codes increases, and both lexicographic and stochastic searchmethods
suffer from doing many pairwise distance comparisons between candidate codewords. By
using algebraic constructions for codes we can avoid the explicit computation of distances
between pairs of codewords.

Remark. We have in many cases improved the previously published lower bounds on
AGC
4 (n, d,w) andAGC,RC

4 (n, d,w) for n�12 by beginning with a lexicographic code as
in [17], then enlarging the code using a variant of simulated annealing [12] that uses hybrid
neighborhoods similar to those used in [26]. These new bounds are included in the tables
in Section 5.

Our interest in constructing DNA codes by starting with linear codes is that there is a
well-developed theory of linear codes, and the parameters of the associated DNA codes can
be easily computed. This approach is scalable to any reasonable lengthn (say less than 80),
and one can use any of the known constructions for linear codes over the different alphabets
K. The quaternary Hamming codes and shortened or truncated derived codes are interesting,
as are the various codes related to the quadratic or duadic codes over the different alphabets.
Note that the Hamming distance between two codewords is unchanged by multiplication

of columns by an invertible element ofK, but this may alter the permutation group and the
GC-weight enumerator.
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4.1. Constructions for DNA codes with fixed GC-content

Suppose one is to construct a DNA code with fixedGC-content and minimum distance
d. The first step is to search for a linear (or additive) codeC which has a large (if not the
best possible) number of words with Hamming weightd. Lower bounds for such codes can
be found for any four elements alphabet in[5] for small parameters, and forGF(4) in [9].
Note also that for small parameters overGF(4) many codes are given in [19].
Nowstarting fromC, since theminimumdistance isnot changedbycolumn-multiplication

with an invertible element, searching for codes that have the all-one vector in their dual
seems to be a good choice since it leads to a code with only evenGC-weights. This is
always possible under certain assumptions:

Proposition 6. Let C be a linear(or additive) code overGF(4) of length n. SupposeC⊥
has a vectorc = (c1, . . . , cn) of weight n. ThenC is equivalent to a code that has the all-one
vector in its dual.

Proof. Let c = (c1, . . . , cn) be a vector ofC⊥ of weightn and letG be a generator matrix
ofC. Vectorsyof the dual ofC are characterized byGyt = 0. By multiplying columni of C
by ci , one obtains an equivalent codeC′ that has the all-one vector in its dual and therefore
has an evenGC-weight enumerator. �

Note thatdifferent codewordsc inC⊥may lead todifferent equivalent codes,and repeating
the operation several times may lead to differentGC-weight enumerators.

Example 1. Consider the[12,6,6] extended quadratic residue codes of length 12 over
GF(4). This code contains 1848 codewords ofGC-weight 6, to be compared with the
previously best know result 736 of[17].

Example 2. Consider the[21,18,3] Hamming codeH3,4 overGF(4). The dual code has
only words of non-null weights 12 or 16. When considering shortened or truncated codes
of H3,4 it is therefore interesting to truncate or shorten columns depending on words of
the dual, so that the dual of the shortened or truncated code has words of weightn in its
dual.

Remark 1. The number of DNA words of lengthnandGC-contentw is
(
n
w

)
2n, which for

fixedn is largest whenw = �n2� (and also forw = �n2� whenn is odd). But for somen and
d, the largest code we found of lengthn, minimum Hammingd, and constantGC-content
w was forw < �n2� (see also Section5). For evenn, the largest codes with constantGC-
content were often, but not always, derived from linear codes with the all-one vector in their
duals. For example considern = 10 andd = 4, in that case one considers a[10,6,4] code.
There are then 11 possibilities for theGC-weight:{0,1,2,3,4,5,6,7,8,9,10}, now if one
modifies the code such that the all-one word is in the dual, theGC-weight of any codeword
has to be even so that there are only 6 possibilities for theGC-weight: {0,2,4,6,8,10},
since the number of codewords does not change, it means that on the average there are twice
asmuch codewords for each possibility in the case of evenGC-weight. Practically one finds
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1008 codewords withGC-weight 5 for a[10,6,4] code and 1680 codewords ofGC-weight
4 if one modifies the code.

Remark 2. More accurate models of melting temperatures take into account the
nucleotides at neighboring positions of a codeword, not just the overallGC-content or
a codeword (see e.g.[24]). From a linear code with minimum weightd, one may test
all the codewords having a small range ofGC-contents with a more accurate model of
melting temperature, and keep those that fall within the desired tolerance. One may sim-
ilarly filter out those codewords having undesirable predicted secondary
structure.

4.2. Constructions for DNA codes with fixed GC-content with RC constraint

Suppose now that we also wish to add theRCconstraint.
Forneven, we saw that theRconstraint was sufficient, so to optimize our construction we

try as many codesC as possible of minimum weightdwith the all-one vector in their dual,
obtained by themethod of the previous section. For each code, we compute the permutation
group of the code and search for a fixed-point free involution so thatwemayapply Lemma1.
We then keep the code that is unchanged byRhaving the most codewords with a fixedGC-
content, and we apply the linear reverse construction of Section 2. Note that if the all-one
vector is inC ∩ C⊥, the construction also works.
Forn odd, there are two possibilities for dealing with theRCconstraint before applying

the linear reverse construction:
– starting with a code with good parameters, searching for equivalent codes with a one-
point-fixed involution in their permutation groups, and then applying Proposition2,

– startingwith a codewith good parameters, and constructing equivalent codes that contain
the all-one vector and a one-point-fixed involution in their permutation groups.
Note that one can construct equivalent codes that contain the all-one vector in the fol-

lowing way: supposeC has a codewordc = (c1, . . . , cn) of weightn; then multiplying the
columni of C by c2i gives an equivalent code that contains the all-one vector. One has then
only to try different codes in order to find one that also has a one-point-fixed involution in
its permutation group.
One may also wonder whether it is possible to have the all-one vector both in the code

and its dual. Unfortunately this is not possible for oddn, since in this case the all-one vector
is not orthogonal to itself.

Example. Consider the[18,9,8] quaternary cyclic code of[19]. Puncturing this code in
two columns leads to a[16,9,8] codeC16 (say). The dual of this code contains words of
weight 16, which can be used to construct codes equivalent toC16 whose duals contain
the all-one vector. Different choices of different codewords of weight 16 lead to different
codes which have all the all-one vector in their dual. Then for each code with the all-one
vector in its dual one searches for a codewith a fixed-point free involution in its permutation
group. A certain number of trials (around 100 for this code) leads to a code which has a
fixed-point free involution in its permutation group and 6600 words ofGC-weight 8, from
which one extracts 3264 words by the linear reverse construction. Eventually, one obtains
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a DNA code with 3264 words which satisfies theRCconstraint withd = 8 and which has
constantGC-content 8.

Remark. The fact that it is not possible to have the all-one vector in both a code and its
dual for odd lengths explains the fact that our results are relatively less interesting for odd
lengths.

4.3. Parameters for infinite families with fixed GC-content

4.3.1. Binary construction
A trivial construction consists of considering a linear binary code as a code overGF(4).
The following two facts are true:
(1) If C is a binary[n, k, d] code, thenC considered as a code overGF(4) is also a

[n, k, d] code overGF(4).
(2) The binary subcode of the dual ofC as a code overGF(4) is the binary dual ofC : C⊥.
For instance the extended Hamming code forn = 8 andd = 4 leads to the best known

result withGC-content 4 (cf. Tables in the next section).
Infinite families of linear binary codeswith knownweight enumerators like theHamming

codesor theReed–Muller codes of order 2[21] therefore lead to infinite familieswith known
GC-content. This construction may also be used for binary codes whose automorphism
groups are known to contain fixed-point free involutions.

4.3.2. Quaternary Hamming code
LetHr be the[4r−1

3 , 4
r−1
3 − r,3] quaternary Hamming code of orderr.

Proposition 7. Whenr ≡ 1 or 2 (mod 3), then the GC-weight enumerator ofHr is

2(4
r−1)/3−2r (x + y)n.

Proof. Whenr ≡ 1 or 2 (mod 3), Hr is cyclic (and is constacyclic otherwise[19] and

its dualHr is the
[
4r−1
3 , r,4r−1

]
Simplex codeSr , which is also cyclic. Now supposeSr

contains a binary word. SinceSr is cyclic and its dual is generated by only one irreducible
polynomial, this would mean thatSr has a binary generator matrix, which is not possible
since the Sphere-Packing Bound would not be satisfied.�

4.3.3.Z4 Kerdock codes
The infinite family of binary Kerdock codesK(r + 1) of length 2r+1 for odd r are the

Gray images of theZ4-linear Kerdock codesK4(r) of length 2r [14]. This leads to the
following construction.

Proposition 8. For r odd, there exists a DNA code of length2r with Hamming weight
2r−1 + 2r−2 − 2(r−3)/2, 2r (2r − 1) codewords and GC-weight2r−1.

Proof. From[14], the codewords of weights 2r − 2(r−1)/2 of the Kerdock codeK(r + 1)
are the binary images of the set of codewordsSr of K4(r) having 2r−1 coordinates with
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value 1 or 3, having 2r−2−2(r−3)/2 coordinates with value 2, and having Hamming weight
2r−1 + 2r−2 − 2(r−3)/2.
Let cbe a codeword ofSr . Then 2c is inK4(r) andc+2c = 3c remains inK4(r). Hence

keeping only one vector of the two vectorsc and 3c, one derives for any oddr a DNA code
of length 2r , minimum distance 2r−1 + 2r−2 − 2(r−3)/2 and fixedGC-content 2r−1 with
2r (2r − 1) codewords. �

For r = 3, n = 8, d = 5, the set corresponds to the best DNA code known (cf. next
section).

5. Tables

In the following tables we give lower bounds forAGC
4 (n, d,w) (Table1) andAGC,RC

4
(n, d,w) (Table 2) ford�n�20. The constantGC-contentw is usually taken to be�n/2�,
but in some cases linear constructions give larger codes for some other value ofw (usually
even) in the range from�n/2�−1and�n/2�+1.As thegoal is to find the largest codewithany
fixedGC-content, we have included these codes in the tables. (Note thatAGC

4 (n, d,w) =
AGC
4 (n, d, n − w) andAGC,RC

4 (n, d,w) = A
GC,RC
4 (n, d, n − w).)

Bounds ford = 2 are not given in the tables. In [17] it is shown thatAGC
4 (n,2, w) =(

n
w

)
2n−1 for all n, and thatAGC,RC

4 (n,2, w) = (
n
w

)
2n−2 for evenn. It is also shown in [17]

thatAGC,R
4 (n, d,w)�AR

2 (n, d,w) · A2(n, d) for all n, and essentially the same argument
can be used to show the following:

Proposition 9. For all n,

A
GC,RC
4 (n, d,w)�AR

2 (n, d,w) · A2(n, d).

Then sinceAR
2 (n, d,w) =

[(
n
w

) −
( �n/2�

�w/2�
)]

/2, this gives
[(

n
w

) −
( �n/2�

�w/2�
)]

2n−2�
A
GC,RC
4 (n,2, w)�

(
n
w

)
2n−2 for all n. This lower bound can be improved on; for exam-

ple we constructed codes of size 74, 1090, 15,918 and 231,424 forn = 5,7,9 and 11,
respectively.
Constructions derived from linear codes are especially interesting ford up to roughly

n/2; for higherd, except for very special codes we found larger codes using non-linear
constructions (a combination of lexicographic constructions and stochastic search).
Linear constructions follow themethod described in the previous section.We started from

the best know quaternary codes of[9]; of special interest were all of the good cyclic codes,
particular those described in [19]. Note that the extended quaternary[12,6,6], [14,7,6],
[20,10,8] and[30,15,12] quadratic residue codes together with the duadic[18,9,8] code
and the BCH codes of length 15 and 17 lead to many other good codes through the usual
shortening and truncating constructions [15]. Since these codes have in general a big au-
tomorphism group, they can be used to construct DNA codes satisfying theGC constraint
alone, or satisfying both theGCandRCconstraints.
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Table 1

(a)Lower bounds forAGC
4 (n, d,w) with n�20,d�9

n\d 3 4 5 6 7 8 9

4 12.l 4.p — — — — —
5 30m 10.l 3.p — — — —
6 112m 40.l 8l 4.p — — —
7 274m 72m 22l 7.l 3.p — —
8 1056m 224t 56c 24s 5.l 4.p —
9 3012m 555m 133m 40l 16m 5.l 3.p

10 10128m 1680c 420c 116c 32l 16.l 5.l

11 32352m 7392c 1848c 462c 72l 32l 10.l

12 118272c 29568c 2994m 1848c 179m 68l 23m

13 473088c 109824c 8614m 1921m 440l 134m 44m

14 1537536c 384384c 27456l 6076c 1534c 404c 112m

15 6589440c 1647360c 96096c 25740c 6470c 1575c 225m

16 26357760c 6589440c 411840c 111360c 25880c 6680c 532m

17 105431040c 26357760c 1555840c 390080c 48620c 24310c 1272l

18 210862080c 26357760c 5601024c 1400704c 87516c 87516c 3192l

19 756760576c 94595072c 22404096c 5922048c 370128c 92378c 6924m

20 3027042304c 378380288c 94595072c 23688192c 1478048c 369120c 23100c

(b) Lower bounds forAGC
4 (n, d,w) with n�20, 10�d�20

n\d 10 11 12 13 14 15 16 17 18 19 20

10 4.p — — — — — — — — — —
11 4.l 3.p — — — — — — — — —
12 9.m 4.p 4.p — — — — — — — —
13 20l 8.m 4.l 3.p — — — — — — —
14 38l 16m 8.l 4.p 4.p — — — — — —
15 107c 30c 13m 6.m 4.m 3.p — — — — —
16 177l 117c 60c 12.m 5.m 4.p 4.p — — — —
17 380l 132l 123c 22m 9.m 5.m 4.m 3.p — — —
18 920l 216m 123c 38m 18m 9.m 5.m 4.p 4.p — —
19 1326m 431m 163m 71m 33m 15m 8.m 5.m 4.m 3.p —
20 5882c 1461c 401c 130m 58m 31c 13m 8.m 5.m 4.p 4.p

Note, moreover thatAGC,RC
4 (n, d,w)�A

GC,RC
4 (n, d−1, w), and thatAGC,RC

4 (n, d,w)

�A
GC,RC
4 (n+1, d, w) (for evenn simply add a column ofA’s in the center coordinate; for

oddn, insert a column immediately after the center column which isTwhenever the center
column isT and isA otherwise).

Remark. The techniques described in this paper can also be used to improve many of the
lower bounds forARC

4 (n, d) (with unrestrictedGC-content) given in[22,27].

The following notation is used in the tables:
– ‘c’ means coding construction as described above;
– ‘p’ means construction from Proposition 1 of[17];
– ‘l’ means lexicographic construction as in[17];
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Table 2

(a)Lower bounds forAGC,RC
4 (n, d,w) with n�20,d�9

n\d 3 4 5 6 7 8 9

4 6.l 2.p — — — — —
5 15l 3l 1.p — — — —
6 43m 16l 4.l 2.p — — —
7 133m 35m 11m 2l 1.p — —
8 528m 112c 27m 12s 2.p 2.p —
9 1354m 273m 65m 19m 8m 2.l 1.p

10 4542m 840c 170m 54c 15l 8.l 2.p

11 14405m 2457m 463m 113m 35m 12m 5.m

12 58976c 14624c 1369m 924c 81l 27l 11m

13 167263m 27376c 3954l 924c 200m 59m 21m

14 430080c 192192c 11878c 2963c 749c 180c 46c

15 1646240c 411821c 25670c 6430l 1600c 343l 102l

16 13174400c 3293600c 55376c 55376c 12864c 3264c 230l

17 26355520c 6587200c 97450c 97450c 12864c 6060c 549l

18 44808192c 11202048c 698592c 698592c 41784c 10496c 1403l

19 47102080c 23647760c 698592c 698592c 46838m 11319c 3462m

20 756760576c 189189536c 11806240c 11806240c 184756c 184756c 11452c

(b) Lower bounds forAGC,RC
4 (n, d,w) with n�20, 10�d�n

n\d 10 11 12 13 14 15 16 17 18 19 20

10 2.p — — — — — — — — — —
11 2.m 1.p — — — — — — — — —
12 4l 2.p 2.p — — — — — — — —
13 9m 4. 2.m 1.p — — — — — — —
14 15m 7m 4.m 2.p 2.p — — — — — —
15 35l 18m 6m 3.m 2.m 1.p — — — — —
16 74l 52c 24c 5m 2.p 2.p 2.p — — — —
17 164l 56l 30c 11m 4.m 2.m 2.m 1.p — — —
18 387l 104m 43m 19m 9m 4.m 2.p 2.p 2.p — —
19 909m 215m 80m 35m 16m 7m 4.m 2.m 2.m 1.p —
20 2868c 766c 179c 64m 29m 14m 6m 4.m 2.p 2.p 2.p

– ‘t’ means template-map construction from[20]
– ‘s’ means stochastic local search from[26];
– ‘m’ means miscellaneous new construction (usually using simulated annealing, some-
times with a lexicographic code as a seed);

– ‘.’means the lower bound is optimal since it equals the Johnson-type upper bound given
in [17];
Note that sometimes different types of constructions give codes of the same size; for

example in Table 1(a), codes of size 224 for(n, d,w) = (8,4,4) can be found using a
template-map construction [20], a lexicographic construction [17], and a coding construc-
tion. To avoid using multiple subscripts, in the tables we give preference top over t over
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c over l overs overm, corresponding roughly to a preference for simpler or more struc-
tured constructions. In the tables, all of the lower bounds for oddn and forn > 12 (odd
or even) are new, except those with the superscriptp. For n ∈ {4,6,8,10,12}, all of the
lower bounds with superscriptsmare new, and those with superscriptc are new except for
(n, d,w) = (8,5,4) in Table1(a) and(n, d,w) = (8,4,4) in Table 2(a). The tables are also
available on thewebathttp://csua.berkeley.edu/ ∼ok/dnacodes.html and
we welcome updates.

5.1. Remarks on running times

For codes of lengthnandGC-contextw, the running time for the lexicographic construc-
tions we used scales roughly like|C|n (

n
w

)
2n, where|C| is the size of the resulting code,

which increases asd decreases. (Bounds on the size of the resulting code can be computed
in advance using themethods in[17].)We used both random codes and lexicographic codes
with random offsets as seeds for the stochastic search algorithms, which we ran until we
were bored (generally because the codes had stopped improving for a while). We did not
keep track of all of the run times, but they mostly ranged from a few minutes to a few days
depending onn, dandw. (For example, in Table 2(b) the code of size 528 satisfying theRC
andGC-content constraints for(n, d,w) = (8,3,4) took 4 h (CPU-time) to construct on a
2GHz Pentium 4 computer; three minutes total were spent constructing 200 lexicographic
codes using different random offsets—the largest of these codes had size 383, and the re-
maining time was spent improving this code using stochastic search.) We did not attempt
either lexicographic or stochastic constructions whendwas much smaller thann (roughly
d < n − 12).
All of the computations for linear codes were done with the Magma system [6], and the

running time was usually a few seconds for smalln up to a few minutes forn = 20.
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