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Abstract

In this paper we translate in terms of coding theory constraints that are used in designing DNA codes
for use in DNA computing or as bar-codes in chemical libraries. We propose new constructions for
DNA codes satisfying either a reverse-complement constra®@G-aontent constraint, or both, that
are derived from additive and linear codes over four-letter alphabets. We focus in particular on codes
overG F(4), and we construct new DNA codes that are in many cases better (sometimes far better)
than previously known codes. We provide updated tables up to length 20 that include these codes as
well as new codes constructed using a combination of lexicographic techniques and stochastic search.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of designing DNA codes (sets of words of fixed lengiter the alphabets
{A, C, G, T}) that satisfy certain combinatorial constraints has applications for reliably
storing and retrieving information in synthetic DNA strands. These codes can be used in
particular for DNA computingl1] or as molecular bar-codes [8,25].

In [13,17,20,22], four different constraints on DNA codes are considered: the Hamming
constraint for a distance, the reverse-complement constraint, the reverse constraint and
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the fixedGC-content constraint. The purpose of the first three constraints is to make non-
desirable hybridizations between different DNA strands less likely to happen. The fixed
GC-content constraint is used to obtain similar melting temperafd®js

Bounds for codes satisfying these constraints are presented in [17,22] and several con-
structions using stochastic search, a template-map strategy, genetic algorithms and lexico-
graphic codes have been proposed [11,13,17,20,26,27]. As discussed in Section 4, there are
parameter ranges for which these approaches are not entirely satisfactory.

In this paper we translate all of these constraints in terms of coding theory [21]. This
point of view allows us to use classical coding results and leads to the construction of new
good DNA codes that are in almost all cases better than previously known constructions
for lengthn greater than 10 and minimum distartep to roughlyn/2. Moreover, these
constructions are easily obtained and are scalable. Note that previous results were obtained
in [23] with codes but only for reversible cyclic codes and asymptotic lengths.

It should be noted that the constraints we consider do not address certain issues related
to hybridization which may be important in practical applications, for example insensitiv-
ity to frame-shifts, the avoidance of secondary structure, and the use of a more accurate
model of melting temperature, see [7] for a survey of approaches to DNA word-design that
address these and other issues. Some of these issues may be addressed computationally
as a post-processing step (cf. Section 4); codes may also be screened experimentally [4].
In applications in which codewords (possibly of variable length) concatenate, additional
constraints become important, some of which can be cast in coding-theoretic terms (e.g.
[2,18]) and others which have been investigated from the perspective of formal languages
(e.g. [16]) and symbolic dynamics (e.g. [10]).

The paper is organized as follows: in Section 2 we recall basic notions for DNA codes and
linear codes; in Section 3 we translate the constraints on DNA codes into coding-theoretic
terms; in Section 4 we detail our constructions; and in Section 5 we give tables of the
best known DNA codes of length 20 or less satisfying the figticontent constraint or
the fixedGC-content constraint together with tRe&C constraint. These tables include linear
constructions and new codes obtained through a combination of lexicographic constructions
and stochastic search.

2. Background on linear codes and DNA codes

A DNA code of lengthn is a set of codewordéxy, ..., x,) with x; € {A,C,G, T}
(representing the four nucleotides in DNA). We use a hat to denote the Watson—Crick
complement of a nucleotide, sb= 7,7 = A, C = G, andG = C.

The Hamming distancéd (x, y) between two codewords is the number of coordinates

in which x andy are distinct. Thaeverseof a codewordx = (x1,..., x,) iS denoted
by xR = (x,, ..., x1), and thereverse-complementf x = (x1, ..., x,) iS denoted by
xRC = (%,,..., %1).

In this paper we shall identify codes ovet, C, G, T} with codes over other four-letter
alphabet¥, whereK is eitherGF(4) = {0, w, @, 1} or Z4 = Z/4Z = {0, 1, 3, 2}. The
four symbols in{A, C, G, T} are identified with the four symbols i in the orders given
above,sothat =x +1forx e GF(4) andx = x + 2forx € Z4.
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We refer tq[15,21] for a general background on error-correcting codes. An additive code
C overK of lengthn is an additive subgroup a&”. If, moreover,C is a linear subspace
of K" the code is said to be linear. [, k, d] code denotes a code of lengthdimension
k and minimum distancd over a given field. Note that in this paper we mainly consider
linear codes ove6 F (4), although some theorems are valid over different alphabets. We
denote the complete weight enumerator of a c@dwer G F(4) by CWE¢(x, y,z,t) =
3 e X0y Z10(4na(©) whereny (c) is the number of occurrencesiok GF (4) ina
codewordc. We denote b\GCWe (x, y) = CWE¢(x, x, v, y) the GC-weight enumerator
of C, i.e., the weight enumerator that counts the number of coordinatésihand{w, @},
and we denote by W (x, y) the weight enumerator of the binary subcod€df.e., the
subcode of consisting of those words ¢fwhose coordinates are either ‘0’ or ‘1’).

The dual of a cod€ of lengthn overK is defined ag+ = {x € K"|x-y =0forally €
C}, wherex - y is the standard inner producty; + - - - x,, ¥, for K = Z4 and the Hermitian
inner productc1y1 + - - - x, ¥, for K = GF(4).

Two codes oveK are permutation-equivalent if one can be obtained from the other by
permuting the columns (coordinates), and are equivalent if one can be obtained from the
other by permuting the columns and multiplying columns by invertible elemeri€s of

The permutation group of a code of lengtis the group of permutations ¢f, 2, 3, . . ., n}
that, when applied to the columns of the code, maps the code to itself. A permutation that
is its own inverse is called an involution.

3. Constraints on DNA codes
3.1. Hamming distance constraint

The Hamming distance constraint for a DNA calles thatH (x, y) >d forall x, y € C
with x # y, for some prescribed minimum distand€T his constraint will be enforced in
all of the codes we consider, in addition to some combination of the constraints described
below.

3.2. Reverse constraint

The reverse constraint is that(xR, y) >d for all x, y € C, includingx = y. Itis useful
as an intermediate step in constructing codes with the reverse-complement constraint. A
natural idea is to start with a code that is fixed by the reverse permuRtidrich exchanges
columni and columm + 1 — i for 1<i <n.

This idea is generalized by the following simple lemma:

Lemma 1. LetC’ be a code of length n such that

— n = 2k is even and’’ has a fixed-point free involution in its permutation graiiie., a
permutation of the forndas, a2) - - - (azx—1, azx) which leaves no column unchanged
or

— n = 2k+1lisodd andC’ has a one-point-fixed involution in its permutation grdue., a
permutation of the fornfay, az) - - - (a2x—1, a2x) Which leaves one column unchanyed
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ThenC’ is permutation-equivalent to a codkthat has the reverse permutation R in its
permutation group

Proof. Suppose(’ is a code of even length = 2k with a fixed-point free involution
(a1, a2) - - - (az—1, az). Consider the permutatignthat sends columay; 1 to columni
and columruy; to column 2o + 1 — i, for 1<i <k. The argument for odd is similar. [

Thelinear reverse constructiois then defined as follows:

Let C' be a code oveK with minimum distancel which possesses in its permutation
group a fixed-point free involution (far even) or a one-point-fixed involution (forodd).
Then by Lemmad., C’ is permutation-equivalent to a co@éhat is fixed byR. Now sinceR
is an involution can be written as a disjoint unigh= Co U C1 UC>, whereCy is the set of
codewords ir€ that are unchanged Iy andC; andCz are two sets that are interchanged by
R. A set satisfying the reverse constraint together with the Hamming constiaiobtained
by takingC; or C2. Note that of course the safg andCz are not unique.

In the case of linear codes it is easy to compute the sub€edé/e associate to any
reverse permutatioR of lengthn a codeCr defined by the following generator matitig:

— forneven

100 --- 00 1
Gr = 010::::::010
0 01 10---0
— fornodd
10 0 0 01
01 O 0 10
Gr =

o
o
'_\ .

R o
=
o
o

Now obviously|C1| = % and|Cp| can be computed by the following proposition:

Proposition 1. If C is a code that is fixed by the reverse permutatigth@n the subcode
Co of C consisting of the codewords that are unchanged by R is obtained as the intersection
of C and the cod€g.

Proof. A codewordc = (c1, ..., c,) is unchanged by if and only if ¢; = ¢,4+1-; for
1<i <n, whichis equivalent to havinge Cr. [

Note that although we mainly use this construction for linear codes Gv&@), the
construction can be generalized to additive codes GuE(4) simply by considering the
matrix Gr + wGR rather tharGg.
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3.3. Reverse-complement constraint

The reverse-complement constraint is ttatxRC, y)>d for all x, y e C, including
x = y. Again the mapr — xRC is an involution, although it is not a linear map. To
construct codes satisfying the reverse-complement constraint, it can be useful to begin with
codes oveK that contains a special codeword we denote byvhich is the all-one word
for K = GF(4), and is the all-two word foK = Za.

Starting from a cod&’ that contains £ and a fixed-point free or a one-point-fixed
involution, one may construct a cod®that is equivalent t&’ and is of the formnC =
Co U C1 U C2, where(y is fixed pointwise under the reverse-complement operatiorCand
andC; are interchanged by this operation.

The condition that a code contain§ Imay be avoided in some cases. Ag22], we
let Af,f(n, d) denote the maximum cardinality of a DNA code of lengtlthat satisfies
the Hamming distance and reverse constraints for a giyand IetAffC(n, d) denote the
maximum cardinality of a DNA code of lengththat satisfies the Hamming distance and
reverse-complement constraints for a giwkerin [22] the following close relationship is
given for evem:

ARC(n, d) = AR, d).

This result is obtained through a construction in which the fiy& coordinates of each
codeword are replaced by their complements. Unfortunately, fontiid construction may
decrease the minimum distance by one, giving the inequaffy(n, d) > AR(n, d — 1) in
[22]. Here we prove an inequality for odthat is often tighter:

Proposition 2. For odd n

AR, d
Affc(n,dg#.

Proof. Suppose that is a DNA code of size4§(n, d) satisfying the Hamming distance
and reverse constraints for a givenwith n = 2k + 1 odd. Letx — x* denote the map
that complements the firét = | %] coordinates of a codeword Clearly, H (x*, y*) =
H(x,y) forall x, y € C. We also haved (x*)RC, y*) = H(xR, y) + 1if xp41 = yes1;
H((x®RC, y*) = HxR, y)=1if xp 11 = Prpr; andH ((x*)RC, y*) = H(xR, y) otherwise.
Now consider the subcod€s, Cc, Cg andCr of C consisting of codewords in which the
(k+ L)stcoordinate i\, C, G andT, respectively. ClearlyCa |+ |Cc|+ |Ca|+ |ICr| = |C|
and one (sa¢’) of the two code€ 4 U C¢c orCg U Cr has at Ieasnff(n, d)/2 codewords.
Note thatwe neverhavg 1 = x,1forx, y € €', soH ((x*)RC, y*) > H(xR, y)forx, y €
C'. ThereforeC’™* = {c*|c € C'} satisfies the Hamming distance and reverse-complement
constraints for the gived, S0ARC(n, d) >1C"*| > AR(n, d)/2. O

Remark 1. For oddn, if the codeC is linear and the middle column is not alwagor 0),
then|Ca| = |Cc| = |ICg| = |Cr| = |C]/4; equivalent results hold for additive codes.
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Remark 2. When starting from a linear (or additive) code, the construction described above
in which one takes the complement of the first half of the coordinates does not in general
preserve the linearity (or additivity) of the code; nevertheless, it is still possible to apply
the Linear Reverse Construction and the method of the previous subsection to compute the
size of|Co|.

3.4. Fixed GC-content constraint

TheGC-content constraintis that each codewerd C has the sam@&C-weight. Starting
from a linear code, the question is how to compute @@weight enumerator. It can of
course be obtained by specializing the complete weight enumerator, but this turns out to be
quickly time consuming, since finding the complete weight enumerator may in itself take a
long time. We propose in the following a simple way to compute3awveight enumerator
of a code ovelG F (4) (additive or linear).

Theorem 1. LetC be a linear code oveG F (4). Then

1
GCWe(x,y) = @BWCL 2(x +y), 2(x — y)).
Proof. GCWe(x,y) = CWEe(x,x,y,y) = ——CWEe1(2(x + ), 2(x — y),0,0) =

IcL |
ﬁBWCL(z(x +y),2x—y). O

Proposition 3. LetC be alinear code ove F (4). Then the binary subcode®fs obtained
as the intersection of the two binary codﬁ% andCs, whereC; andC, are generated by
the binary matricesd; and H» satisfyingH; + wH» = H, for H a generator matrix ot~.

Proof. Letc be an element of the binary subcodeCadind letH be a generator matrix of
Ct. ThenH can be uniquely written ad = Hi1 + wH» with H; and H» binary matrices.

LetC1 andC; be the binary codes generatedy and H>. Thenc s in the binary subcode
of Cifand only if Hix' = Hox' =0, i.e. ifand only ifc € C{ NCy. O

Now since one is interested in finding as many codewords as possible with th&game
weight, one may prefer eveBC-weight enumerators, because these contain on average
twice as many codewords for each e@@-weight than non-eve@ C-weight enumerators.

A simple way to construct such codes is given in the following proposition.

Proposition 4. LetC be a code oveG F (4). If the all-one vector belongs @+, then the
GC-weight enumerator @ is even(i.e., has only even weights

Proof. By Theoreml, theGC-weight enumerator af is ﬁBWCL(Z(X +¥),2(x —y)).
Let W = Yi 5 A;x"~'y' be the binary weight enumerat8ie. . Let P;(x, y) = (x +
W =)'+ x+ ) (x—y)" . ThenP;(x, y) = P;(x, —y), andP;(x, y) is even in
y. Now if the all-one vector is i€+, A; = A,_; and the result follows. O
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The technique for turning a code satisfying the reverse constraint into a code satisfy-
ing the reverse-complement constraint generalizes to codes with @Gedontent. Let
AfC’RC(n, d, w) denote the maximum size of a DNA code of lengtvith constaniGC-
contentw that satisfies the Hamming distance @@ constraints for a given, and let
AfC’R(n, d, w) denote the maximum size of a DNA code of lengttvith constantGC-
contentw that satisfies the Hamming distance and reverse constraints for adyilteis
proved in[17] thatAffc’RC(n, d,w) = AfC’R(n, d, w) for evenn, andAfc’RC(n, d,w)>
AffC’R(n, d — 1, w) for oddn. It is also straightforward to adapt the proof of Proposition 2
to show the following.

Proposition 5. For odd n

AR, d, w)

ARG, d,w)> 5

4. Constructions

Constructions for DNA codes with constaBC-content (with and without thRC con-
straint) are given if17,20,26,27]. But the ‘template-map’ constructions in [20] @or
n/2) are suboptimal for > 8 (see [17]), and the lexicographic constructions in [17] be-
come impractical fon around 20 (or less for smal). Stochastic local search methods as
in [26,27] are appealing in that they have access to more of the space of possible codes than
lexicographic constructions, and are suitable for larggrarticularly wherd is large. For
smallerd, the size of codes increases, and both lexicographic and stochastic search methods
suffer from doing many pairwise distance comparisons between candidate codewords. By
using algebraic constructions for codes we can avoid the explicit computation of distances
between pairs of codewords.

Remark. We have in many cases improved the previously published lower bounds on
ASC€(n, d, w) andAS R, d, w) for n <12 by beginning with a lexicographic code as

in [17], then enlarging the code using a variant of simulated annealing [12] that uses hybrid
neighborhoods similar to those used in [26]. These new bounds are included in the tables
in Section 5.

Our interest in constructing DNA codes by starting with linear codes is that there is a
well-developed theory of linear codes, and the parameters of the associated DNA codes can
be easily computed. This approach is scalable to any reasonabletgisgthless than 80),
and one can use any of the known constructions for linear codes over the different alphabets
K. The quaternary Hamming codes and shortened or truncated derived codes are interesting,
as are the various codes related to the quadratic or duadic codes over the different alphabets.

Note that the Hamming distance between two codewords is unchanged by multiplication
of columns by an invertible element Kf but this may alter the permutation group and the
GC-weight enumerator.
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4.1. Constructions for DNA codes with fixed GC-content

Suppose one is to construct a DNA code with fixe@-content and minimum distance
d. The first step is to search for a linear (or additive) c6dehich has a large (if not the
best possible) number of words with Hamming weidhtower bounds for such codes can
be found for any four elements alphabe{shfor small parameters, and faf F (4) in [9].

Note also that for small parameters ov&F (4) many codes are given in [19].

Now starting fronC, since the minimum distance is not changed by column-multiplication
with an invertible element, searching for codes that have the all-one vector in their dual
seems to be a good choice since it leads to a code with only @@&weights. This is
always possible under certain assumptions:

Proposition 6. LetC be a linear(or additive) code overG F (4) of length n. Supposé"
has avector = (c1, ..., ¢,) of weight n. Thed is equivalent to a code that has the all-one
vector in its dual

Proof. Letc = (c1, ..., c,) be a vector o€+ of weightn and letG be a generator matrix
of C. Vectorsy of the dual ofC are characterized h¢y’ = 0. By multiplying columni of C

by ¢;, one obtains an equivalent codethat has the all-one vector in its dual and therefore
has an eveGC-weight enumerator. [

Note that different codeworasn C- may lead to different equivalent codes, and repeating
the operation several times may lead to diffet@@weight enumerators.

Example 1. Consider thg12, 6, 6] extended quadratic residue codes of length 12 over
GF(4). This code contains 1848 codewords@C-weight 6, to be compared with the
previously best know result 736 {7].

Example 2. Consider thg21, 18, 3] Hamming codeHs 4 over G F (4). The dual code has

only words of non-null weights 12 or 16. When considering shortened or truncated codes
of Hs 4 it is therefore interesting to truncate or shorten columns depending on words of
the dual, so that the dual of the shortened or truncated code has words of weigtg

dual.

Remark 1. The number of DNA words of lengthandGC-contentw is (3)) 2", which for
fixednis largest whem = | 5] (and also forw = [5] whennis odd). But for some and

d, the largest code we found of lengthminimum Hammingd, and constanGC-content

w was forw < 5] (see also SectioB). For evem, the largest codes with consta&C-
content were often, but not always, derived from linear codes with the all-one vector in their
duals. For example consider= 10 andd = 4, in that case one considergld, 6, 4] code.
There are then 11 possibilities for tB&-weight:{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, now if one
modifies the code such that the all-one word is in the dualGtBeveight of any codeword

has to be even so that there are only 6 possibilities foG@awveight: {0, 2, 4, 6, 8, 10},

since the number of codewords does not change, it means that on the average there are twice
as much codewords for each possibility in the case of &@nveight. Practically one finds
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1008 codewords witksC-weight 5 for a[10, 6, 4] code and 1680 codewordsGfC-weight
4 if one modifies the code.

Remark 2. More accurate models of melting temperatures take into account the
nucleotides at neighboring positions of a codeword, not just the ov&@itontent or

a codeword (see e.f24]). From a linear code with minimum weigldt one may test

all the codewords having a small range@€-contents with a more accurate model of
melting temperature, and keep those that fall within the desired tolerance. One may sim-
ilarly filter out those codewords having undesirable predicted secondary
structure.

4.2. Constructions for DNA codes with fixed GC-content with RC constraint

Suppose now that we also wish to add R€constraint.

Forneven, we saw that tHeconstraint was sufficient, so to optimize our construction we
try as many codeS as possible of minimum weigldtwith the all-one vector in their dual,
obtained by the method of the previous section. For each code, we compute the permutation
group of the code and search for a fixed-point free involution so that we may apply Lemma 1.
We then keep the code that is unchangedlmaving the most codewords with a fix&d-
content, and we apply the linear reverse construction of Section 2. Note that if the all-one
vector is inC N C*, the construction also works.

Forn odd, there are two possibilities for dealing with tR€ constraint before applying
the linear reverse construction:

— starting with a code with good parameters, searching for equivalent codes with a one-
point-fixed involution in their permutation groups, and then applying Proposttion

— starting with a code with good parameters, and constructing equivalent codes that contain
the all-one vector and a one-point-fixed involution in their permutation groups.

Note that one can construct equivalent codes that contain the all-one vector in the fol-
lowing way: suppos€ has a codeword = (cy, . . ., ¢,) of weightn; then multiplying the
columni of C by c[.2 gives an equivalent code that contains the all-one vector. One has then
only to try different codes in order to find one that also has a one-point-fixed involution in
its permutation group.

One may also wonder whether it is possible to have the all-one vector both in the code
and its dual. Unfortunately this is not possible for aridince in this case the all-one vector
is not orthogonal to itself.

Example. Consider thg18, 9, 8] quaternary cyclic code ¢fi9]. Puncturing this code in

two columns leads to HL6, 9, 8] codeC15 (say). The dual of this code contains words of
weight 16, which can be used to construct codes equivale@tgovhose duals contain

the all-one vector. Different choices of different codewords of weight 16 lead to different
codes which have all the all-one vector in their dual. Then for each code with the all-one
vector in its dual one searches for a code with a fixed-point free involution in its permutation
group. A certain number of trials (around 100 for this code) leads to a code which has a
fixed-point free involution in its permutation group and 6600 word&Gfweight 8, from

which one extracts 3264 words by the linear reverse construction. Eventually, one obtains



108 P. Gaborit, O.D. King / Theoretical Computer Science 334 (2005) 99-113

a DNA code with 3264 words which satisfies tRE€ constraint withd = 8 and which has
constaniGC-content 8.

Remark. The fact that it is not possible to have the all-one vector in both a code and its
dual for odd lengths explains the fact that our results are relatively less interesting for odd
lengths.

4.3. Parameters for infinite families with fixed GC-content

4.3.1. Binary construction

A trivial construction consists of considering a linear binary code as a cod&;avet).

The following two facts are true:

(1) If C is a binary[n, k, d] code, therC considered as a code ovérF (4) is also a
[n, k, d] code ovelG F (4).

(2) The binary subcode of the dual®#s a code oveF F (4) is the binary dual of : C*.

For instance the extended Hamming coderfes 8 andd = 4 leads to the best known
result withGC-content 4 (cf. Tables in the next section).

Infinite families of linear binary codes with known weight enumerators like the Hamming
codes or the Reed—Muller codes of ord§2 ?] therefore lead to infinite families with known
GC-content. This construction may also be used for binary codes whose automorphism
groups are known to contain fixed-point free involutions.

4.3.2. Quaternary Hamming code

Let H, be the[*52, 1 — 1, 3] quaternary Hamming code of order

Proposition 7. Whenr = 1or2 (mod 3, then the GC-weight enumerator &f. is

2(4’71)/372;’()6 + y)n.

Proof. Whenr = 10or2 (mod 3, H, is cyclic (and is constacyclic otherwi§&9] and

its dual H, is the "’r—?jl, r, 4’_1] Simplex codesS,, which is also cyclic. Now supposg
contains a binary word. Sinc® is cyclic and its dual is generated by only one irreducible
polynomial, this would mean th&}. has a binary generator matrix, which is not possible
since the Sphere-Packing Bound would not be satisfiédl.

4.3.3. Z4 Kerdock codes

The infinite family of binary Kerdock codek (- + 1) of length 2+ for oddr are the
Gray images of the&Zs-linear Kerdock codex4(r) of length 2 [14]. This leads to the
following construction.

Proposition 8. For r odd, there exists a DNA code of leng# with Hamming weight
214 or=2 _ 20=3)/2 2r(2r _ 1) codewords and GC-weigBt 1.

Proof. From[14], the codewords of weights 2- 20"~1/2 of the Kerdock code (r + 1)
are the binary images of the set of codewosgdof K4(r) having 2-1 coordinates with
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value 1 or 3, having’22 — 20'=3/2 coordinates with value 2, and having Hamming weight
2r71 =+ 2r72 _ 2(r73)/2_

Letcbe a codeword af,.. Then 2 is in K4(r) andc + 2c = 3c remains inK4(r). Hence
keeping only one vector of the two vectarand 3, one derives for any odda DNA code
of length 2, minimum distance 21 + 272 — 20'=3/2 and fixedGC-content 2-1 with
2" (2" — 1) codewords. [

Forr = 3,n = 8,d = 5, the set corresponds to the best DNA code known (cf. next
section).

5. Tables

In the following tables we give lower bounds faC (n, d, w) (Table1) andA§<R¢
(n, d, w) (Table 2) ford <n <20. The constartC-contentw is usually taken to bén /2],
but in some cases linear constructions give larger codes for some other val(asfally
even)intherangefronm/2|—1and|n/2]+1.Asthe goalistofind the largest code waihy
fixed GC-content, we have included these codes in the tables. (Notetfffatr, d, w) =
A€, d,n —w) andAS R, d, w) = A R0, d,n —w).)

Bounds ford = 2 are not given in the tables. In [17] it is shown th{C (n, 2, w) =
(")2'~foralln, and that§ ©"(n, 2, w) = () 2"~ for evenn. Itis also shown in [17]

thatAfc’R(n, d, w) >A2R(n, d,w) - Az(n, d) for all n, and essentially the same argument
can be used to show the following:

Proposition 9. For all n,

ASCRC(n, d, w)> AB(n, d, w) - Az(n, d).

Then sinceAR(n, d, w) = [(:}) - (LLIZ//ZZJJ)] /2, this gives[(;’)) — (LL;//ZZJJ)] -2
A§ERC(n, 2, w)< (") 2*~2 for all n. This lower bound can be improved on; for exam-

n
ple we constructedwcodes of size 74, 1090, 15,918 and 231,424 fo15, 7,9 and 11,
respectively.

Constructions derived from linear codes are especially interesting digpr to roughly
n/2; for higherd, except for very special codes we found larger codes using non-linear
constructions (a combination of lexicographic constructions and stochastic search).

Linear constructions follow the method described in the previous section. We started from
the best know quaternary codeq®f, of special interest were all of the good cyclic codes,
particular those described in [19]. Note that the extended quatefb2r§, 6], [14, 7, 6],

[20, 10, 8] and[30, 15, 12] quadratic residue codes together with the dugtic9, 8] code

and the BCH codes of length 15 and 17 lead to many other good codes through the usual
shortening and truncating constructions [15]. Since these codes have in general a big au-
tomorphism group, they can be used to construct DNA codes satisfyirngQroonstraint

alone, or satisfying both th@ C andRC constraints.
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Table 1
(a) Lower bounds for§€ (n, d, w) withn <20,d <9
nd 3 4 5 6 7 8 9

4 12! 4.p — — — — —

5 30" 10! 3r — — — —

6 112" 40! 8 4.p — — —

7 274" 72m 22 7.1 3.r — —

8 1058 224 56° 28 5! 4.» —

9 3012 555" 133" 40 16" 5.1 3.r
10 10128 1680° 420° 116° 32 16/ 5!
11 32352 7392 1848 46 72 32 10!
12 118272 29568 2994 1848 179" 68 23"
13 473088 109824 8614" 19277 440 134" 44m
14 1537536 384384 27458 6076 1534 404 112"
15 6589440 1647360 96096 25740 6470° 1575 225"
16 26357760 6589440 411840 111360 25880 6680° 532"

17 105431040 26357760 1555840 390080 48620 24310 1272
18 210862080 26357760 5601024 1400704 87516 87516 3192
19 756760576 94595072 22404096 5922048 370128 92378 6924"
20 3027042304 378380288 94595072 23688192 1478048 369120 23100

(b) Lower bounds fort§€ (n, d, w) with n < 20, 10<d <20

n\d 10 11 12 13 14 15 16 17 18 19 20
10 4p — — — — — — — — — —
11 4! 3P — — — — — — — — —
12 gm 4.» 4.» — — — — — — — —
13 2d 8.m 4! 3P — — — — — — —
14 34 16" 8! 4.0 4.0 — — — — — —
15 107 30 13" 6. 4.m 3p — — — — —
16 177 117 60° 12.m 5.m 4.0 4.r — — — —
17 380 132 123 2on gm 5m 4m 3.7 — — —
18 92d 218" 123 3gn 8" 9m 5.m 4.r 4.p — —

19 1326 431" 163" 7 33" 15" 8. 5.m 4.m 3.7
20 5882 1461 401° 130" 58" 31¢ 13" 8./ 5.1 4.p 4.p

Note, moreover thme'RC(n, d,w)< Afc’RC(n, d—1,w),and tharAfC’RC(n, d, w)

< Affc’RC(n +1,d, w) (for evenn simply add a column o&’s in the center coordinate; for

oddn, insert a column immediately after the center column whic¢hwshenever the center
column isT and isA otherwise).

Remark. The techniques described in this paper can also be used to improve many of the
lower bounds fomffc(n, d) (with unrestrictedsC-content) given if22,27].

The following notation is used in the tables:
— ‘c’means coding construction as described above;
— ‘p’ means construction from Proposition 1[&f7];
— ‘I'means lexicographic construction ag[v];
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Table 2

(a) Lower bounds fome’RC(n, d, w) withn <20,d <9

n\d 3 4 5 6 7 38 9

4 6! 2.p — — — — —

5 15 3 1P — — — —

6 43" 16 4! 2.p — — —

7 133" 3gn 11" 2! 1P — —

8 528" 112 27" 12 2.p 2.p —

9 1354" 273" 65" 19" am 2! 1r
10 4542 840 170" 54¢ 15 8! 2.0
11 1440%' 2457" 463" 113" 35" 12m 5./mn
12 58976 14624 1369" 924 81 27 11m
13 16726%" 27376 3954 924 200" 59" 21m
14 430080 192197 11878 2963 749 180 46°
15 1646240 41182F 25670 6430 1600° 343 102
16 13174400 3293600 55376 55376 12864 3264 230
17 26355520 6587200 97450 97450 12864 6060° 549
18 44808192 11202048 698592 698592 41784 10496 1403
19 47102080 23647760 698592 698592 46838" 11319 3462"
20 756760576 189189536 11806240 11806240 184756 184756 11457
(b) Lower bounds fome‘RC(n, d, w) withn <20, 10<d <n

n\d 10 11 12 13 14 15 16 17 18 19 20
10 2P — — — — — — — — — —
11 om 1P — — — — — — — — —
12 4 2.P 2.p — — — — — — — —
13 gn 4, om 1.r — — — — — — —
14 18" 7m 4m 2.P 2.p — — — — — —
15 35 18" 6" 3m  pm 1p — — — R —
16 74 5X 24 gn 2.r 2.r p X — — S —
17 164 56 30° 11m 4m 2m 2.m 1P — — —

18 387 104" 43" 19" o 4.m 2.P 2.p b2 — —
19 909" 218" 8Q" 3gn 1g" ™ agm  pm  pm 1P
20 2868 766 179 e4n 297 14n  @n am 2P 2P 2P

— ‘' means template-map construction fr¢20]

— ‘S'means stochastic local search fr¢26];

— ‘m means miscellaneous new construction (usually using simulated annealing, some-
times with a lexicographic code as a seed);

— ‘.’ means the lower bound is optimal since it equals the Johnson-type upper bound given

in [17];

Note that sometimes different types of constructions give codes of the same size; for
example in Table 1(a), codes of size 224 fard, w) = (8, 4, 4) can be found using a
template-map construction [20], a lexicographic construction [17], and a coding construc-
tion. To avoid using multiple subscripts, in the tables we give preferenpetert over
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c overl overs overm, corresponding roughly to a preference for simpler or more struc-
tured constructions. In the tables, all of the lower bounds forrddd forn > 12 (odd

or even) are new, except those with the supersgriptorn € {4, 6, 8, 10, 12}, all of the
lower bounds with superscripts are new, and those with superscrigre new except for
(n,d, w) = (8,5,4)inTablel(a)andn, d, w) = (8, 4, 4) in Table 2(a). The tables are also
available on the web &ttp://csua.berkeley.edu/ ~ok/dnacodes.html and

we welcome updates.

5.1. Remarks on running times

For codes of length andGC-contextw, the running time for the lexicographic construc-
tions we used scales roughly likéln (1) 2", where|C| is the size of the resulting code,
which increases asdecreases. (Bounds on the size of the resulting code can be computed
in advance using the methodqiv].) We used both random codes and lexicographic codes
with random offsets as seeds for the stochastic search algorithms, which we ran until we
were bored (generally because the codes had stopped improving for a while). We did not
keep track of all of the run times, but they mostly ranged from a few minutes to a few days
depending om, d andw. (For example, in Table 2(b) the code of size 528 satisfyindriie
andGC-content constraints fai, d, w) = (8, 3, 4) took 4 h (CPU-time) to construct on a
2 GHz Pentium 4 computer; three minutes total were spent constructing 200 lexicographic
codes using different random offsets—the largest of these codes had size 383, and the re-
maining time was spent improving this code using stochastic search.) We did not attempt
either lexicographic or stochastic constructions whevas much smaller tham(roughly
d <n—12).

All of the computations for linear codes were done with the Magma system [6], and the
running time was usually a few seconds for snmalp to a few minutes for = 20.

References

[1] L.M. Adleman, Molecular computation of solutions to combinatorial problems, Science 266 (1994) 1021—
1024.

[2] M. Arita, S. Kobayashi, DNA sequence design using templates, New Generation Comput. 20 (2002) 263—
278.

[3] A. Ben-Dor, R.M. Karp, B. Schwikowski, Z. Yakhini, Universal DNA tag systems: a combinatorial design
scheme, J. Comput. Biol. 7 (2000) 503-519.

[4] H. Bi, J. Chen, R. Deaton, M.H. Garzon, H. Rubin, D.H. Wood, In vitro selection of nhon-crosshybridizing
oligonucleotides for computation, Natural Comput. 2 (2003) 417—-426.

[5] G.T. Bogdanova, A.E. Brouwer, S.N. Kapralov, P.R.J. OstetgError correcting codes over an alphabet
with four elements, Designs Codes Cryptography 23 (2001) 333—-342.

[6] W. Bosma, J. Cannon, Handbook of Magma Functions, Sydney, 1995.

[7] A. Brenneman, A. Condon, Strand design for bio-molecular computation, Theoret. Comput. Sci. 287 (2002)
39-58.

[8] S. Brenner, R.A. Lerner, Encoded combinatorial chemistry, Proc. Natl. Acad. Sci. USA 89 (1992) 5381
5383.

[9] A.E. Brouwer, Bounds on the size of linear codes, in: V.S. Pless, W.C. Huffman (Eds.), Handbook of Coding
Theory, North-Holland, Amsterdam, 1998, pp. 295-461.


http://csua.berkeley.edu/ok/dnacodes.html

P. Gaborit, O.D. King / Theoretical Computer Science 334 (2005) 99-113 113

[10] E.M. Coven, N. Jonoska, DNA hybridization, shifts of finite type, and tiling of the integers, in: C. Mart:'in-
Vide, V. Mitrana (Eds.), Grammars and Automata for String Processing, Taylor & Francis, London, 2003,
pp. 369-380.

[11] R. Deaton, M. Garzon, R.C. Murphy, J.A. Rose, D.R. Franceschetti, S.E. Stevens Jr., Genetic search of
reliable encodings for DNA-based computation, in: J.R. Koza, D.E. Goldberg, D.B. Fogel, R.L. Riolo (Eds.),
Late Breaking Papers at the First Annual Conference on Genetic Programming, Stanford Bookstore GP-96B,
1996, pp. 9-15.

[12] A.A. El Gamal, L.A. Hemachandra, |. Shperling, V.K. Wei, Using simulated annealing to design good codes,
IEEE Trans. Inform. Theory 33 (1987) 116-123.

[13] A.G. Frutos, Q. Liu, A.J. Thiel, AAM.W. Sanner, A.E. Condon, L.M. Smith, R.M. Corn, Demonstration of a
word design strategy for DNA computing on surfaces, Nucleic Acids Res. 25 (1997) 4748—-4757.

[14] A.R. Hammons Jr., P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, P. Solé ZEHmearity of Kerdock,
Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40 (1994) 301-319.

[15] W.C. Huffman, V. Pless, Fundamentals of Coding Theory, Cambridge University Press, Cambridge, 2003.

[16] L. Kari, S. Konstantinidis, E. Losseva, G. Wozniak, Sticky-free and overhang-free DNA languages, Acta
Inform. 40 (2003) 119-157.

[17] O.D. King, Bounds for DNA codes with constant GC-content, Electron. J. Combin. 10 (2003) R33 13pp.

[18] S. Kobayashi, T. Kondo, M. Arita, On template method for DNA sequence design, in: M. Hagiya, A. Ohuchi
(Eds.), DNA Computing: Eighth Internat. Workshop on DNA-Based Computers, Lecture Notes in Computer
Science, Vol. 2568, Springer, Berlin, 2002, pp. 205-214.

[19] F. Kschischang, S. Pasupathy, Some ternary and quaternary codes and associated sphere packings, IEEE
Trans. Inform. Theory 38 (1992) 227-246.

[20] M. Li, H.J. Lee, A.E. Condon, R.M. Corn, DNA word design strategy for creating sets of non-interacting
oligonucleotides for DNA microarrays, Langmuir 18 (2002) 805-812.

[21] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error Correcting Codes, North-Holland, Amsterdam, 1977.

[22] A. Marathe, A.E. Condon, R.M. Corn, On combinatorial DNA word design, J. Comput. Biol. 8 (2001) 201—
220.

[23] V. Rykov, A. J. Macula, D. Torney, P. White, DNA sequences and quaternary cyclic codes, IEEE Isit, 2001,
Washington, pp. 248-248.

[24] J. Santalucia Jr., A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor
thermodynamics, Proc. Natl. Acad. Sci. USA 95 (1998) 1460—-1465.

[25] D. Shoemaker, D.A. Lashkari, D. Morris, M. Mittmann, R.W. Davis, Quantitative phenotypic analysis of
yeast deletion mutants using a highly parallel molecular bar-coding strategy, Nature Genetics 16 (1996) 450
—456.

[26] D.C. Tulpan, H.H. Hoos. Hybrid randomised neighbourhoods improve stochastic local search for DNA code
design, in: Y. Xiang, B. Chaib-draa (Eds.), Advances in Atrtificial Intelligence: 16th Conf. of the Canadian
Society for Computational Studies of Intelligence, Lecture Notes in Computer Science, Vol. 2671, Springer,
Berlin, 2003, pp. 418-433.

[27] D.C. Tulpan, H.H. Hoos, A.E. Condon, Stochastic local search algorithms for DNA word design, in: M.
Hagiya, A. Ohuchi (Eds.), DNA Computing: Eighth International Workshop on DNA-Based Computers,
Lecture Notes in Computer Science, Vol. 2568, Springer, Berlin, 2002, pp. 229-241.



	Linear constructions for DNA codes
	Introduction
	Background on linear codes and DNA codes
	Constraints on DNA codes
	 Hamming distance constraint
	 Reverse constraint 
	Reverse-complement constraint
	Fixed =GC-content constraint

	Constructions
	 Constructions for DNA codes with fixed =GC-content
	Constructions for DNA codes with fixed =GC-content with =RC constraint
	Parameters for infinite families with fixed =GC-content
	Binary construction
	Quaternary Hamming code
	Z4 Kerdock codes


	Tables
	Remarks on running times

	References


