8,337 research outputs found

    Opinion Testimony and Ultimate Issues: Incompatible?

    Get PDF

    Right to Inspect Public Records

    Get PDF

    Effect of exercise training on liver function in adults who are overweight or exhibit fatty liver disease: a systematic review and meta-analysis

    Get PDF
    ObjectiveExercise training has been shown to have beneficial effects on liver function in adults overweight or with fatty liver disease. To establish which exercise programme characteristics were likely to elicit optimal improvements.DesignSystematic review and meta-analysis of randomised, controlled trials.Data sourcesPubMed, CINAHL and Cochrane controlled trials registry searched (1966 to 2 October 2015).Eligibility criteria for selecting studiesExercise intervention, with or without dietary intervention, versus usual care in adults undertaking, exercise training, who were overweight, obese or exhibited fatty liver disease (non-alcoholic fatty liver disease or non-alcoholic steatohepatitis).ResultsWe included 21 randomised controlled trials, totalling 1530 participants. Exercise intervention studies with total exercise programme workload &gt;10 000 kcal produced significant improvements in intrahepatic fat, −3.46% (95% CI −5.20% to −1.73%), p&lt;0.0001, I2=73%; effect size (standardised mean difference, SMD) −1.77 (−3.11 to −0.42), p=0.01, I2=77%. When data from only exercise studies were pooled, there was a reduction in fasting free fatty acids (FFAs) −74.15 µmol/L (95% CI −118.47 to −29.84), p=0.001, I2=67% with a large effect size (SMD) −0.94 (−1.36 to −0.52), p&lt;0.0001, I2=0%. When data from only exercise studies were pooled, there was a significant reduction in insulin MD −1.88 UL (95% CI −3.43 to −0.34), p=0.02, I2=31%. The liver enzymes, alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transpeptidase, were not significantly altered with exercise.ConclusionsExercise training reduces intrahepatic fat and FFAs while increasing cardiorespiratory fitness. An aggregate exercise programme energy expenditure (&gt;10 000 kcal) may be required to promote reductions in intrahepatic fat.</jats:sec

    Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner

    Get PDF
    We report on the use of a fixed-spacer Fabry–Perot ring cavity to filter spatially and temporally a 10-W laser-diode-pumped Nd:YAG master-oscillator power amplifier. The spatial filtering leads to a 7.6-W TEMinfinity beam with 0.1% higher-order transverse mode content. The temporal filtering reduces the relative power fluctuations at 10 MHz to 2.8 x 10^-/sqrtHz, which is 1 dB above the shot-noise limit for 50 mA of detected photocurrent

    Simulated Marine Heat Wave Alters Abundance and Structure of Vibrio Populations Associated with the Pacific Oyster Resulting in a Mass Mortality Event

    Full text link
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Marine heat waves are predicted to become more frequent and intense due to anthropogenically induced climate change, which will impact global production of seafood. Links between rising seawater temperature and disease have been documented for many aquaculture species, including the Pacific oyster Crassostrea gigas. The oyster harbours a diverse microbial community that may act as a source of opportunistic pathogens during temperature stress. We rapidly raised the seawater temperature from 20 °C to 25 °C resulting in an oyster mortality rate of 77.4%. Under the same temperature conditions and with the addition of antibiotics, the mortality rate was only 4.3%, strongly indicating a role for bacteria in temperature-induced mortality. 16S rRNA amplicon sequencing revealed a change in the oyster microbiome when the temperature was increased to 25 °C, with a notable increase in the proportion of Vibrio sequences. This pattern was confirmed by qPCR, which revealed heat stress increased the abundance of Vibrio harveyi and Vibrio fortis by 324-fold and 10-fold, respectively. Our findings indicate that heat stress-induced mortality of C. gigas coincides with an increase in the abundance of putative bacterial pathogens in the oyster microbiome and highlights the negative consequences of marine heat waves on food production from aquaculture

    Occurrence and dynamics of potentially pathogenic vibrios in the wet-dry tropics of northern Australia

    Full text link
    Bacteria from the Vibrio genus are a ubiquitous component of coastal and estuarine ecosystems with several pathogenic Vibrio species displaying preferences for warm tropical waters. We studied the spatial and temporal abundance of three key human potential pathogens V. parahaemolyticus, V. cholerae and V. vulnificus in northern tropical Australia, over the wet and dry seasons, to identify environmental parameters influencing their abundance. Quantitative PCR (qPCR) analysis revealed that V. parahaemolyticus occurred more frequently and in higher abundance than V. cholerae and V. vulnificus across all locations examined. All three species were more abundant during the wet season, with V. parahaemolyticus abundance correlated to temperature and conductivity, whereas nutrient concentrations and turbidity best explained V. vulnificus abundance. In addition to these targeted qPCR analyses, we assessed the composition and dynamics of the entire Vibrio community using hsp60 amplicon sequencing. Using this approach, 42 Vibrio species were identified, including a number of other pathogenic species such as V. alginolyticus, V. mimicus and V. fluvialis. The Vibrio community was more diverse in the wet season, with temperature and dissolved oxygen as the key factors governing community composition. Seasonal differences were primarily driven by a greater abundance of V. parahaemolyticus and V. vulnificus during the wet season, while spatial differences were driven by different abundances of V. harveyi, V. campbellii, V. cholerae and V. navarrensis. When we related the abundance of Vibrio to other bacterial taxa, defined using 16S rRNA gene amplicon sequencing, V. parahaemolyticus was negatively correlated to several taxa, including members of the Rickettsiales and Saccharimonadales, while V. vulnificus was negatively correlated to Rhobacteriaceae and Cyanobiaceae. In contrast, V. alginolyticus, V. harveyi and V. mediterranei were all positively correlated to Cyanobacteria. These observations highlight the dynamic nature of Vibrio communities and expands current understanding of the processes governing the occurrence of potentially pathogenic Vibrio spp. in tropical coastal ecosystems

    A New High Throughput Sequencing Assay for Characterizing the Diversity of Natural Vibrio Communities and Its Application to a Pacific Oyster Mortality Event

    Full text link
    © Copyright © 2019 King, Siboni, Kahlke, Green, Labbate and Seymour. The Vibrio genus is notable for including several pathogens of marine animals and humans, yet characterization of Vibrio diversity using routine 16S rRNA sequencing methods is often constrained by poor resolution beyond the genus level. Here, a new high throughput sequencing approach targeting the heat shock protein (hsp60) as a phylogenetic marker was developed to more precisely discriminate members of the Vibrio genus in environmental samples. The utility of this new assay was tested using mock communities constructed from known dilutions of Vibrio isolates. Relative to standard and Vibrio-specific 16S rRNA sequencing assays, the hsp60 assay delivered high levels of fidelity with the mock community composition at the species level, including discrimination of species within the Vibrio harveyi clade. This assay was subsequently applied to characterize Vibrio community composition in seawater and delivered substantially improved taxonomic resolution of Vibrio species compared to 16S rRNA analysis. Finally, this assay was applied to examine patterns in the Vibrio community within oysters during a Pacific oyster mortality event. In these oysters, the hsp60 assay identified species-level Vibrio community shifts prior to disease onset, pinpointing V. harveyi as a putative pathogen. Given that shifts in the Vibrio community can precede, cause, and follow disease onset in numerous marine organisms, there is a need for an accurate high throughput assay for defining Vibrio community composition in natural samples. This Vibrio-centric hsp60 sequencing assay offers the potential for precise high throughput characterization of Vibrio diversity, providing an enhanced platform for dissecting Vibrio dynamics in the environment

    Apomixis and hybridization drives reticulate evolution and phyletic differentiation in sorbus l.: Implications for conservation

    Get PDF
    This is the final version. Available from Frontiers Media via the DOI in this record. Hybridization and polyploidy are major forces in the evolution of plant diversity and the study of these processes is of particular interest to understand how novel taxa are formed and how they maintain genetic integrity. Sorbus is an example of a genus where active diversification and speciation are ongoing and, as such, represents an ideal model to investigate the roles of hybridization, polyploidy and apomixis in a reticulate evolutionary process. To elucidate breeding systems and evolutionary origins of a complex of closely related Sorbus taxa, we assessed genotypic diversity and population structure within and among taxa, combining data from nuclear DNA microsatellite markers and flow cytometry. Clonal analysis and low genotypic diversity within the polyploid taxa suggest apomixis is obligate. However, genetic variation has led to groups of ‘clone-mates’ within apomictic taxa that strongly suggest mutation is responsible for the genotypic diversity of these apomictic lineages. In addition, microsatellite profiles and site demographics suggest hybridization events among apomictic polyploid Sorbus may have contributed to the extant diversity of recognized taxa in this region. This research demonstrates that both macro- and micro-evolutionary processes are active within this reticulate Sorbus complex. Conservation measures should be aimed at maintaining this process and should therefore be prioritized for those areas of Sorbus species richness where the potential for interspecific gene flow is greatest.Whitley Wildlife Conservation TrustNational Botanic Garden of Wale

    Traveling length and minimal traveling time for flow through percolation networks with long-range spatial correlations

    Full text link
    We study the distributions of traveling length l and minimal traveling time t through two-dimensional percolation porous media characterized by long-range spatial correlations. We model the dynamics of fluid displacement by the convective movement of tracer particles driven by a pressure difference between two fixed sites (''wells'') separated by Euclidean distance r. For strongly correlated pore networks at criticality, we find that the probability distribution functions P(l) and P(t) follow the same scaling Ansatz originally proposed for the uncorrelated case, but with quite different scaling exponents. We relate these changes in dynamical behavior to the main morphological difference between correlated and uncorrelated clusters, namely, the compactness of their backbones. Our simulations reveal that the dynamical scaling exponents for correlated geometries take values intermediate between the uncorrelated and homogeneous limiting cases
    • …
    corecore