40,086 research outputs found

    D Branes and Textures

    Get PDF
    We examine the flavor structure of the trilinear superpotential couplings which can result from embedding the Standard Model within D brane sectors in Type IIB orientifold models, which are examples within the Type I string framework. We find in general that the allowed flavor structures of the Yukawa coupling matrices to leading order are given by basic variations on the "democratic" texture ansatz. In certain interesting cases, the Yukawa couplings have a novel structure in which a single right-handed fermion couples democratically at leading order to three left-handed fermions. We discuss the viability of such a ``single right-handed democracy'' in detail; remarkably, even though there are large mixing angles in the u,d sectors separately, the CKM mixing angles are small. The analysis demonstrates the ways in which the Type I superstring framework can provide a rich setting for investigating novel resolutions to the flavor puzzle.Comment: 23 pages, references adde

    LFV and Dipole Moments in Models with A4 Flavour Symmetry

    Full text link
    It is presented an analysis on lepton flavour violating transitions, leptonic magnetic dipole moments and electric dipole moments in a class of models characterized by the flavour symmetry A4 x Z3 x U(1)_FN, whose choice is motivated by the approximate Tri-Bimaximal mixing observed in neutrino oscillations. A low-energy effective Lagrangian is constructed, where these effects are dominated by dimension six operators, suppressed by the scale M of new physics. All the flavour breaking effects are universally described by the vacuum expectation values of a set of spurions. Two separate cases, a supersymmetric and a general one, are described. An upper limit on the reactor angle of a few percent is concluded.Comment: 10 pages, 1 figure. Adapted from a talk given at "DISCRETE'08: Symposium on Prospects in the Physics of Discrete Symmetries", December 11-16 2008, Valencia, Spai

    Recurrence Formulas for Fully Exponentially Correlated Four-Body Wavefunctions

    Full text link
    Formulas are presented for the recursive generation of four-body integrals in which the integrand consists of arbitrary integer powers (>= -1) of all the interparticle distances r_ij, multiplied by an exponential containing an arbitrary linear combination of all the r_ij. These integrals are generalizations of those encountered using Hylleraas basis functions, and include all that are needed to make energy computations on the Li atom and other four-body systems with a fully exponentially correlated Slater-type basis of arbitrary quantum numbers. The only quantities needed to start the recursion are the basic four-body integral first evaluated by Fromm and Hill, plus some easily evaluated three-body "boundary" integrals. The computational labor in constructing integral sets for practical computations is less than when the integrals are generated using explicit formulas obtained by differentiating the basic integral with respect to its parameters. Computations are facilitated by using a symbolic algebra program (MAPLE) to compute array index pointers and present syntactically correct FORTRAN source code as output; in this way it is possible to obtain error-free high-speed evaluations with minimal effort. The work can be checked by verifying sum rules the integrals must satisfy.Comment: 10 pages, no figures, accepted by Phys. Rev. A (January 2009

    Entangled inputs cannot make imperfect quantum channels perfect

    Get PDF
    Entangled inputs can enhance the capacity of quantum channels, this being one of the consequences of the celebrated result showing the non-additivity of several quantities relevant for quantum information science. In this work, we answer the converse question (whether entangled inputs can ever render noisy quantum channels have maximum capacity) to the negative: No sophisticated entangled input of any quantum channel can ever enhance the capacity to the maximum possible value; a result that holds true for all channels both for the classical as well as the quantum capacity. This result can hence be seen as a bound as to how "non-additive quantum information can be". As a main result, we find first practical and remarkably simple computable single-shot bounds to capacities, related to entanglement measures. As examples, we discuss the qubit amplitude damping and identify the first meaningful bound for its classical capacity.Comment: 5 pages, 2 figures, an error in the argument on the quantum capacity corrected, version to be published in the Physical Review Letter

    Recursion relations for Hylleraas three-electron integral

    Full text link
    Recursion relations for Hylleraas three-electron integral are obtained in a closed form by using integration by parts identities. Numerically fast and well stable algorithm for the calculation of the integral with high powers of inter-electronic coordinates is presented.Comment: 12 pages, requires RevTeX4, submitted to Phys. Rev.

    Trimaximal neutrino mixing from vacuum alignment in A4 and S4 models

    Full text link
    Recent T2K results indicate a sizeable reactor angle theta_13 which would rule out exact tri-bimaximal lepton mixing. We study the vacuum alignment of the Altarelli-Feruglio A4 family symmetry model including additional flavons in the 1' and 1" representations and show that it leads to trimaximal mixing in which the second column of the lepton mixing matrix consists of the column vector (1,1,1)^T/sqrt{3}, with a potentially large reactor angle. In order to limit the reactor angle and control the higher order corrections, we propose a renormalisable S4 model in which the 1' and 1" flavons of A4 are unified into a doublet of S4 which is spontaneously broken to A4 by a flavon which enters the neutrino sector at higher order. We study the vacuum alignment in the S4 model and show that it predicts accurate trimaximal mixing with approximate tri-bimaximal mixing, leading to a new mixing sum rule testable in future neutrino experiments. Both A4 and S4 models preserve form dominance and hence predict zero leptogenesis, up to renormalisation group corrections.Comment: 24 pages, 2 figures, version to be published in JHE
    • …
    corecore