3,749 research outputs found
High temperature refractory member with radiation emissive overcoat
A radiation type heat dissipator for use in a plasma engine is formed of a refractory metal layer upon which there is deposited a radiation emissive coating made of a high emissivity material such as zirconium diboride. The radiation emissive coating has a surface emissivity coefficient substantially greater than the emissivity coefficient of the refractory metal and thereby enhances the optical radiating efficiency of the heat dissipator
Thermal design improvements for 30kWe arcjet engine
Two thermal design improvements for 30 kWe arcjet engines are described. A ZrB2 high temperature coating was used to increase the surface emissivity of the nozzle radiating surface, enabling lower temperature operation, which should lead to longer nozzle life. The ZrB2-coated engine operated 120 C cooler than the uncoated baseline engine indicating a 30 percent increase in the surface emissivity. An engine design which has fewer active seals than previous designs and operates at lower overall component temperatures is described. The nozzle on the engine operated at 1950 C at 30 kWe while the baseline engine nozzle reached 2000 C at 23 kWe. The back of the engine was more than a factor of two cooler when compared to the baseline engine
Design, Performance, and Complexity of CRC-Aided List Decoding of Convolutional and Polar Codes for Short Messages
Motivated by the need to communicate short control messages in 5G and beyond,
this paper carefully designs codes for cyclic redundancy check (CRC)-aided list
decoding of tail-biting convolutional codes (TBCCs) and polar codes. Both codes
send a 32-bit message using an 11-bit CRC and 512 transmitted bits. We aim to
provide a careful, fair comparison of the error performance and decoding
complexity of polar and TBCC techniques for a specific case. Specifically, a
TBCC is designed to match the rate of a (512, 43) polar code, and optimal
11-bit CRCs for both codes are designed. The paper examines the distance
spectra of the polar and TBCC codes, illuminating the different distance
structures for the two code types. We consider both adaptive and non-adaptive
CRC-aided list decoding schemes. For polar codes, an adaptive decoder must
start with a larger list size to avoid an error floor. For rate-32/512 codes
with an 11-bit CRC, the optimized CRC-TBCC design achieves a lower total
failure rate than the optimized CRC-polar design. Simulations showed that the
optimized CRC-TBCC design achieved significantly higher throughput than the
optimized CRC-polar design, so that the TBCC solution achieved a lower total
failure rate while requiring less computational complexity.Comment: First revision submitted to IEEE Transactions on Communication
Weber Number Tests in the NASA Icing Research Tunnel
A study of the Weber Number effects on droplets in the NASA Icing Research Tunnel is described. The work focuses on examining the droplet Weber Number effects observed for droplets accelerated by air flow in the contraction section of the Icing Research Tunnel to the test section. These results will aid in Supercooled Large Drop facility design studies. Measurements acquired with the Phase Doppler Interferometer and High Speed Imaging Dual Range Flight Probes at a series of locations through the contraction are presented alongside a 1D numerical model developed during this study to aid interpretation of the experimental results. An estimate of the maximum Weber Number observed in the Icing Research Tunnel for varying drop sizes up to 1000 m is presented and provided for incorporation into future design studies. Finally, experimental results coupled with a numerical model indicate that breakup of drops up to 1000 m is not occurring in the NASA Icing Research Tunnel up to 129 m/s
Weber Number Tests in the NASA Icing Research Tunnel
A study of the Weber Number effects on droplets in the NASA Icing Research Tunnel is described. The work focuses on examining the droplet Weber Number effects observed for droplets accelerated by air flow in the contraction section of the Icing Research Tunnel to the test section. These results will aid in Supercooled Large Drop facility design studies. Measurements acquired with the Phase Doppler Interferometer and High Speed Imaging Dual Range Flight Probes at a series of locations through the contraction are presented alongside a 1D numerical model developed during this study to aid interpretation of the experimental results. An estimate of the maximum Weber Number observed in the Icing Research Tunnel for varying drop sizes up to 1000 m is presented and provided for incorporation into future design studies. Finally, experimental results coupled with a numerical model indicate that breakup of drops up to 1000 m is not occurring in the NASA Icing Research Tunnel up to 129 m/s
Valence band offset of InN/AlN heterojunctions measured by X-ray photoelectron spectroscopy
The valence band offset of wurtzite-InN/AlN (0001) heterojunctions is determined by x-ray photoelectron spectroscopy to be 1.52±0.17 eV. Together with the resulting conduction band offset of 4.0±0.2 eV, a type-I heterojunction forms between InN and AlN in the straddling arrangement
Surface electronic properties of undoped InAlN alloys
The variation in surface electronic properties of undoped c-plane InxAl1−xN alloys has been investigated across the composition range using a combination of high-resolution x-ray photoemission spectroscopy and single-field Hall effect measurements. For the In-rich alloys, electron accumulation layers, accompanied by a downward band bending, are present at the surface, with a decrease to approximately flatband conditions with increasing Al composition. However, for the Al-rich alloys, the undoped samples were found to be insulating with approximate midgap pinning of the surface Fermi level observed
Robotic-Movement Payload Lifter and Manipulator
A payload lifter/manipulator module includes a rotatable joint supporting spreader arms angularly spaced with respect to one another. A rigid arm is fixedly coupled to the joint and extends out therefrom to a tip. A tension arm has a first end and a second end with the first end being fixedly coupled to the tip of the rigid arm. The tension arm incorporates pivots along the length thereof. Each pivot can be engaged by or disengaged from the outboard end of a spreader arm based on a position of the spreader arm. A hoist, positioned remotely with respect to the module and coupled to the second end of the tension arm, controls the position of the spreader arms to thereby control the position of the rigid arm's tip. Payload lifter/manipulator assemblies can be constructed with one or more of the modules
- …