3 research outputs found
Recommended from our members
What Patients Say: Large-Scale Analyses of Replies to the Parkinsons Disease Patient Report of Problems (PD-PROP).
BACKGROUND: Free-text, verbatim replies in the words of people with Parkinsons disease (PD) have the potential to provide unvarnished information about their feelings and experiences. Challenges of processing such data on a large scale are a barrier to analyzing verbatim data collection in large cohorts. OBJECTIVE: To develop a method for curating responses from the Parkinsons Disease Patient Report of Problems (PD-PROP), open-ended questions that asks people with PD to report their most bothersome problems and associated functional consequences. METHODS: Human curation, natural language processing, and machine learning were used to develop an algorithm to convert verbatim responses to classified symptoms. Nine curators including clinicians, people with PD, and a non-clinician PD expert classified a sample of responses as reporting each symptom or not. Responses to the PD-PROP were collected within the Fox Insight cohort study. RESULTS: Approximately 3,500 PD-PROP responses were curated by a human team. Subsequently, approximately 1,500 responses were used in the validation phase; median age of respondents was 67 years, 55% were men and median years since PD diagnosis was 3 years. 168,260 verbatim responses were classified by machine. Accuracy of machine classification was 95% on a held-out test set. 65 symptoms were grouped into 14 domains. The most frequently reported symptoms at first report were tremor (by 46% of respondents), gait and balance problems (>39%), and pain/discomfort (33%). CONCLUSION: A human-in-the-loop method of curation provides both accuracy and efficiency, permitting a clinically useful analysis of large datasets of verbatim reports about the problems that bother PD patients
Recommended from our members
Trichloroethylene: An Invisible Cause of Parkinson’s Disease?
The etiologies of Parkinson's disease (PD) remain unclear. Some, such as certain genetic mutations and head trauma, are widely known or easily identified. However, these causes or risk factors do not account for the majority of cases. Other, less visible factors must be at play. Among these is a widely used industrial solvent and common environmental contaminant little recognized for its likely role in PD: trichloroethylene (TCE). TCE is a simple, six-atom molecule that can decaffeinate coffee, degrease metal parts, and dry clean clothes. The colorless chemical was first linked to parkinsonism in 1969. Since then, four case studies involving eight individuals have linked occupational exposure to TCE to PD. In addition, a small epidemiological study found that occupational or hobby exposure to the solvent was associated with a 500% increased risk of developing PD. In multiple animal studies, the chemical reproduces the pathological features of PD.Exposure is not confined to those who work with the chemical. TCE pollutes outdoor air, taints groundwater, and contaminates indoor air. The molecule, like radon, evaporates from underlying soil and groundwater and enters homes, workplaces, or schools, often undetected. Despite widespread contamination and increasing industrial, commercial, and military use, clinical investigations of TCE and PD have been limited. Here, through a literature review and seven illustrative cases, we postulate that this ubiquitous chemical is contributing to the global rise of PD and that TCE is one of its invisible and highly preventable causes. Further research is now necessary to examine this hypothesis