78 research outputs found

    Seventeen Amino Acid Peptide (Peptide P) for Treating Ischemia and Reperfusion Injury

    Get PDF
    Peptide P, having the amino acid sequence Tyr-D-Ala-Phe-Ala-Asp-Val-Ala-Ser-Thr-Ile-Gly-Asp-Phe-His-Ser-Ile-NH2-SEQ ID NO:1, is useful to treat ischemia

    Seventeen Amino Acid Peptide (Peptide P) for Treating Ischemia and Reperfusion Injury

    Get PDF
    Peptide P, having the amino acid sequence Tyr-D-Ala-Phe-Ala-Asp-Val-Ala-Ser-Thr-Ile-Gly-Asp-Phe-Phe-His-Ser-Ile-NH2, is useful to treat ischemia

    Semi-allogeneic vaccine for T-cell lymphoma

    Get PDF
    © 2007 Yu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Semi-allogeneic vaccines and tumor-induced immune tolerance

    Get PDF
    Experimental results from studies with inbred mice and their syngeneic tumors indicated that the inoculation of semi-allogeneic cell hybrids (derived from the fusion between syngeneic tumor cells and an allogeneic cell line) protects the animal host from a subsequent lethal challenge with unmodified syngeneic tumor cells. Semi-allogeneic somatic cell hybrids were generated by the fusion of EL-4 T lymphoma cells (H-2b) and BALB/c-derived renal adenocarcinoma RAG cells (H-2d). Cell hybrids were injected intra-peritoneally (i.p.) in C57BL/6 mice (H-2b) before challenging the mice with a tumorigenic dose of EL-4 cells. Semi-allogeneic tumor cell hybrids could not form a tumor in the animal host because they expressed allogeneic determinants (H-2d) and were rejected as a transplant. However, they conferred protection against a tumorigenic challenge of EL-4 cells compared to control mice that were mock-vaccinated with i.p.-injected phosphate-buffered saline (PBS) and in which EL-4 lymphomas grew rapidly to a large size in the peritoneal cavity. Screening of spleen-derived RNA by means of focused microarray technology showed up-regulation of genes involved in the Th-1-type immune response and in the activation of dendritic antigen-presenting cells (APC). The results of our studies confirm the role of APC in mediating the immune protection induced by semi-allogeneic vaccines by activating a Th-1 response; these studies also reveal that semi-allogeneic vaccines are able to interfere with or even block the tumor-mediated induction of immune tolerance, a key mechanism underlying the suppression of anti-tumor immunity in the immune competent host

    Method for Treating Ischemia

    Get PDF
    A method for treating ischemia by administering deltorphins to a mammal. Deltorphin I SEQ ID NO:1, delntorphin II SEQ ID NO:2 or combinations of deltorphins I SEQ ID NO:1 and II SEQ ID NO:2 may be administered. A deltorphin concentration of about 0.5-20 mg/kg body weight, or alternatively a lower concentration of about 1-1000 ÎĽg/kg body weight of the mammal in a physiologically acceptable formulation is administered up to four hours after an ischemic episode. Deltorphins may also be administered prior to or concurrently with onset of ischemia. Cerebral or spinal cord ischemia or ischemic heart disease may be treated using the method of the invention

    Therapeutic Potential of Exogenous Ketone Supplement Induced Ketosis in the Treatment of Psychiatric Disorders: Review of Current Literature

    Get PDF
    Globally, psychiatric disorders, such as anxiety disorder, bipolar disorder, schizophrenia, depression, autism spectrum disorder, and attention-deficit/hyperactivity disorder (ADHD) are becoming more prevalent. Although the exact pathological alterations are not yet clear, recent studies have demonstrated that widespread changes of very complex metabolic pathways may partially underlie the pathophysiology of many psychiatric diseases. Thus, more attention should be directed to metabolic-based therapeutic interventions in the treatment of psychiatric disorders. Emerging evidence from numerous studies suggests that administration of exogenous ketone supplements, such as ketone salts or ketone esters, generates rapid and sustained nutritional ketosis and metabolic changes, which may evoke potential therapeutic effects in cases of central nervous system (CNS) disorders, including psychiatric diseases. Therefore, the aim of this review is to summarize the current information on ketone supplementation as a potential therapeutic tool for psychiatric disorders. Ketone supplementation elevates blood levels of the ketone bodies: D-β-hydroxybutyrate (βHB), acetoacetate (AcAc), and acetone. These compounds, either directly or indirectly, beneficially affect the mitochondria, glycolysis, neurotransmitter levels, activity of free fatty acid receptor 3 (FFAR3), hydroxycarboxylic acid receptor 2 (HCAR2), and histone deacetylase, as well as functioning of NOD-like receptor pyrin domain 3 (NLRP3) inflammasome and mitochondrial uncoupling protein (UCP) expression. The result of downstream cellular and molecular changes is a reduction in the pathophysiology associated with various psychiatric disorders. We conclude that supplement-induced nutritional ketosis leads to metabolic changes and improvements, for example, in mitochondrial function and inflammatory processes, and suggest that development of specific adjunctive ketogenic protocols for psychiatric diseases should be actively pursued

    Protection Against Ischemia and Reperfusion Injury

    Get PDF
    A compound and method for using the compound to reduce injury associated with ischemia and reperfusion of mammalian organs such as the heart. The compound, either Deltorphin A and/or Dermorphin H, may be administered as part of a preconditioning strategy which reduces the extent of injury and improves organ function following cessation and restoration of blood flow. The compound may be used in preparation for planned ischemia or in a prophylactic manner in anticipation of further ischemic events

    Protection Against Ischemia and Reperfusion Injury

    Get PDF
    A compound and method for using compound-D SEQ ID NO:1 to reduce injury associated with ischemia and reperfusion of mammalian organs such as the heart. The compound may be administered as part of a preconditioning strategy which reduces the extent of injury and improves organ function following cessation and restoration of blood flow. The compound may be used in preparation for planned ischemia or in a prophylactic manner in anticipation of further ischemic events

    Protection Against Ischemia and Reperfusion Injury

    Get PDF
    A compound and method for using the compound to reduce injury associated with ischemia and reperfusion of mammalian organs such as the heart. The compound may be administered as part of a preconditioning strategy which reduces the extent of injury and improves organ function following cessation and restoration of blood flow. The compound may be used in preparation for planned ischemia or in a prophylactic manner in anticipation of further ischemic events

    Protection Against Ischemia and Reperfusion Injury

    Get PDF
    A compound and method for using the compound to reduce injury associated with ischemia and reperfusion of mammalian organs such as the heart. The compound, either Deltorphin A and/or Dermorphin H, may be administered as part of a preconditioning strategy which reduces the extent of injury and improves organ function following cessation and restoration of blood flow. The compound may be used in preparation for planned ischemia or in a prophylactic manner in anticipation of further ischemic events
    • …
    corecore