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Globally, psychiatric disorders, such as anxiety disorder, bipolar disorder, schizophrenia, 
depression, autism spectrum disorder, and attention-deficit/hyperactivity disorder (ADHD) 
are becoming more prevalent. Although the exact pathological alterations are not yet clear, 
recent studies have demonstrated that widespread changes of very complex metabolic 
pathways may partially underlie the pathophysiology of many psychiatric diseases. Thus, 
more attention should be directed to metabolic-based therapeutic interventions in the 
treatment of psychiatric disorders. Emerging evidence from numerous studies suggests that 
administration of exogenous ketone supplements, such as ketone salts or ketone esters, 
generates rapid and sustained nutritional ketosis and metabolic changes, which may evoke 
potential therapeutic effects in cases of central nervous system (CNS) disorders, including 
psychiatric diseases. Therefore, the aim of this review is to summarize the current information 
on ketone supplementation as a potential therapeutic tool for psychiatric disorders. Ketone 
supplementation elevates blood levels of the ketone bodies: D-β-hydroxybutyrate (βHB), 
acetoacetate (AcAc), and acetone. These compounds, either directly or indirectly, beneficially 
affect the mitochondria, glycolysis, neurotransmitter levels, activity of free fatty acid receptor 
3 (FFAR3), hydroxycarboxylic acid receptor 2 (HCAR2), and histone deacetylase, as well as 
functioning of NOD-like receptor pyrin domain 3 (NLRP3) inflammasome and mitochondrial 
uncoupling protein (UCP) expression. The result of downstream cellular and molecular 
changes is a reduction in the pathophysiology associated with various psychiatric disorders. 

Abbreviations: A1R and A2AR, different types of adenosine receptors; AcAc, acetoacetate; ADHD, attention-deficit/hyperactivity 
disorder; BBB, blood–brain barrier; βHB, D-beta-hydroxybutyrate (R-3-hydroxybutyrate); β-OHBD, βHB dehydrogenase; CNS, 
central nervous system; COX-2, cyclooxygenase-2; FFAR3, free fatty acid receptor 3; HCAR2, hydroxycarboxylic acid receptor 2; HPA, 
hypothalamic-pituitary-adrenal; HMG-CoA, hydroxymethylglutaryl-CoA; HMGL, hydroxymethylglutaryl-CoA-lyase; HMGS, 
hydroxymethylglutaryl-CoA-synthase; KE, ketone ester; KS, ketone salt; IL-1β, interleukin-1β; MCT, medium chain triglyceride; 
NLRP3, NOD-like receptor pyrin domain 3; ROS, reactive oxygen species; SCOT: succinyl-CoA:3-ketoacid CoA transferase;  
SSRI, selective serotonin reuptake inhibitor; UCP, uncoupling proteins; WAG/Rij, Wistar Albino Glaxo/Rijswijk.
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We conclude that supplement-induced nutritional ketosis leads to metabolic changes and 
improvements, for example, in mitochondrial function and inflammatory processes, and 
suggest that development of specific adjunctive ketogenic protocols for psychiatric diseases 
should be actively pursued.

Keywords: psychiatric diseases, exogenous ketone supplements, ketosis, mitochondrial dysfunction, inflammation

INTRODUCTION

With an increasing global prevalence, psychiatric disorders can 
present as serious medical conditions composed of emotional, 
cognitive, social, behavioral, and functional impairments (1). 
Lifetime onset of major depressive disorders in the general 
population is up to 11–16% (2, 3), with bipolar disorder present 
in 1% (4, 5), schizophrenia in 1% (6, 7), and anxiety disorder in 
5–31% (1). In relation to attention-deficit/hyperactivity disorder 
(ADHD), worldwide prevalence of this disease in children/
adolescence and adults is about 5.3% and 2.5%, respectively (8, 9), 
while about 1 in 68 children were diagnosed with autism in the 
United States in 2012 (10). It has been demonstrated that not only 
genetic factors but also environmental factors (e.g., infections, early 
traumas, and drugs), age, sociodemographic factors (e.g., ethnicity 
and socioeconomic status), and a complex interplay between these 
factors have a role in the pathophysiology of different psychiatric 
diseases, such as anxiety disorder (1, 11), bipolar disorder (5), 
schizophrenia (6, 12), major depressive disorder (2, 13, 14), 
autism spectrum disorder (15), and ADHD (16). Close association 
between different psychiatric disorders, such as anxiety disorder 
and major depressive disorder, has been demonstrated (5, 17–21).

However, while symptoms, characteristics, and classification 
of different psychiatric disorders are adequately described  
(1, 5, 7, 15, 16, 22), the pathophysiology of psychiatric diseases 
is not yet fully understood. Nevertheless, recent studies have 
demonstrated that the disturbance in the monoaminergic (23–
26) and other neurotransmitter systems (e.g., glutamatergic, 
purinergic, and GABAergic) (27–34), in addition to widespread 
changes of very complex and connected metabolic pathways, 
may partially explain the general condition. For example, it has 
been suggested that mitochondrial dysfunction could play a 
major role (35). Mitochondrial dysfunction may decrease energy/
ATP production, impair calcium homeostasis, increase levels 
of reactive oxygen species (ROS), and alter apoptotic pathways, 
inflammatory processes, neurotransmission, synaptic plasticity, 
and neuronal activity and connectivity (35, 36). Moreover, changes 
in hypothalamic–pituitary–adrenal (HPA) axis activity were 
also demonstrated in patients with psychiatric diseases, in which 
alterations may influence mitochondrial functions: a chronic 
increase in glucocorticoid levels may decrease mitochondrial 
energy production (35, 37). Membrane lipid dysregulation may 
affect the levels of pro-inflammatory cytokines, as well as the 
function of mitochondria, ion channels, and neurotransmitter 
systems implicated in the pathophysiology of psychiatric diseases 
(38, 39). In addition, changes in membrane fatty acid composition 
may alter the function of different cell-surface receptors, ion pumps, 
and special enzymes, such as 5’-nucleotidase, adenylate cyclase, and 
Na+/K+-ATPase (38, 40). Increased activity of the inflammatory 

system and redox pathways may enhance oxidative and nitrosative 
stress, mitochondrial dysfunction, neurodegeneration and 
neuronal death, production of pro-inflammatory cytokines, and 
activity of the HPA axis, whereas it may decrease neurogenesis 
and serotonin levels (35, 37). In addition, functional brain imaging 
studies demonstrated abnormalities in regional cerebral glucose 
metabolism in the prefrontal cortex in patients with mood disorders, 
providing evidence of persistent hypometabolism, particularly in 
the frontal gyrus, in depressed patients (41). Recent transcriptomic, 
proteomic, and metabolomics studies have also highlighted an 
abnormal cerebral glucose and energy metabolism as one of the 
potential pathophysiological mechanisms of schizophrenia, raising 
the possibility that a metabolically based intervention might have 
therapeutic value in the management of the disease (42).

Consequently, different metabolic changes and their 
downstream effects may generate complex, interlinked molecular 
and cellular processes, which may lead to different psychiatric 
diseases. It can be concluded that alterations in multiple interactive 
metabolic pathways and their effects on different physiological 
processes may largely underlie the pathophysiology in patients 
with psychiatric diseases. Indeed, if defective metabolism is the 
cause of such pathologies, then utilization of therapies designed to 
address deficiencies of metabolism (known as metabolic therapies) 
would be a rational approach for the treatment of these diseases.

In a process known as ketogenesis, the ketone bodies [D-β-
hydroxybutyrate (βHB), acetoacetate (AcAc), and acetone] are 
catabolized under normal physiological conditions by the liver 
from fatty acids as a source of fuel (43–45). Higher levels of 
ketones are produced during starvation, fasting, and neonatal 
development (46, 47). Moreover, although most of βHB, which 
is used as an energy source in the brain, is synthesized by the 
liver, ketone body synthesis and release by astrocytes have also 
been demonstrated (48, 49). Ketone bodies can transport to 
the bloodstream from the liver, cross the blood–brain barrier 
(BBB), enter brain cells through monocarboxylic transporters, 
convert to acetyl CoA in the mitochondria, and enter the Krebs 
cycle (43–44, 45, 50). Through this process, ketosis (increased 
ketone body levels in the blood) provides energy by metabolism 
of ketone bodies to acetyl-CoA and synthesis of ATP for cells 
in the central nervous system (CNS) (43, 51, 52). It has been 
demonstrated in animal—and/or human studies—that ketogenic 
diets and supplements may have metabolism-based therapeutic 
potential in the treatment of several diseases, such as Alzheimer’s 
disease (53–57), Parkinson’s disease (54, 58–60), glucose 
transporter type 1-deficiency syndrome (61–63), amyotrophic 
lateral sclerosis (60, 64), cancer (44, 58, 65, 66), epilepsy  
(54, 67, 68), schizophrenia (42, 69–74), anxiety (55, 75–77), 
autism spectrum disorder (78–81), and depression (69, 77, 82).
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Ketogenic diets are high-fat, adequate protein and very 
low carbohydrate diets that may have an alleviating role on 
psychiatric diseases (69, 73), likely through bioenergetics, ketone 
metabolism, and signaling, as well as their effects on, for example, 
neuronal activity, neurotransmitter balance, and inflammatory 
processes (43, 52, 83–91). Strict patient compliance to the KD 
is the primary factor in achieving therapeutic ketosis, and this is 
often difficult or impossible in the psychiatric population (69). 
Therefore, the administration of exogenous ketone supplements 
including medium chain triglycerides (MCTs), ketone salt (KS), 
ketone ester (KE), and their combination with MCT oil (e.g., 
KSMCT) presents a strategy to circumvent dietary restriction 
to rapidly induce and sustain nutritional ketosis (65, 75, 84, 92). 
Ketone bodies not only enhance cell energy metabolism through 
anaplerotic effects but also suppress oxidative stress, decrease 
inflammatory processes, and regulate functions of ion channels 
and neurotransmitter systems (45, 93, 94)—all processes 
implicated in the pathophysiology of psychiatric diseases (1, 5, 6, 
15, 16, 22). Therefore, the rationale exists for the use of exogenous 
ketone supplementation, which induces a nutritional ketotic state 
similar to that derived from the ketogenic diet and may mimic the 
effects of ketogenic diet on several CNS diseases through ketone 
body-evoked metabolic and signaling alterations (54, 55, 67, 75, 
95–99) and epigenetic effects (100).

In contrast to diabetic ketosis, which can induce pathological 
levels of blood βHB (ranging >25 mM) and potentially lead to 
life-threatening acidosis, nutritional ketosis elevates blood βHB 
from the normal range (0.1–0.2 mM) to a safe and—in many 
cases—therapeutic range (1–7 mM: therapeutic ketosis) (44, 54, 
101). While rigorous adherence to ketogenic diets is typically 
difficult to follow and requires clear medical guidance and 
strong motivation, consumption of exogenous ketogenic agents 
effectively induces ketosis with little difficulty (65, 75, 84, 92, 
102). Moreover, prolonged consumption of ketogenic diets may 
generate side effects, such as weight loss, alteration of mentation, 
growth retardation, nephrolithiasis, nausea, constipation, 
gastritis, hyperlipidemia, hypoglycemia, hyperuricemia, and 
ulcerative colitis (44, 69, 103, 104). Consequently, developing 
a safer alternative method using ketone body precursors and 
exogenous ketone supplements, such as KSs or KEs, to circumvent 
dietary restriction is appealing.

Recent research has demonstrated that it is possible to rapidly 
increase and maintain blood levels of ketone bodies in a dose-
dependent manner in both animals and humans (54, 84, 99) for 
the treatment of several CNS diseases (55, 64, 67, 75). Thus, it is 
possible that exogenous ketone supplementation-induced ketosis 
may be an effective therapeutic tool against psychiatric diseases. 
Indeed, exogenous ketone supplements have a modulatory 
influence on behavior and anxiolytic effect in animal studies 
(55, 75, 83). Moreover, in contrast to ketogenic diets, exogenous 
ketone supplements are relatively well-tolerated and can be 
formulated and titrated to minimize or avoid side effects (56, 65, 
75, 84, 99, 105, 106).

There is limited evidence to support the beneficial effects 
of exogenous ketone supplements in psychiatric diseases at 
the moment [e.g., Refs. (55, 75, 76)], but the use of exogenous 
ketone supplements may be a viable alternative or adjuvant to 

pharmacotherapy in the treatment of these disorders. Consequently, 
in the following major section, we provide a short overview of 
the metabolism of exogenous ketone supplements, which results 
in rapid and safe mild therapeutic ketosis and, as a consequence, 
may be an alternative method to ketogenic diets for the treatment 
of psychiatric disorders. In the next major sections, therapeutic 
potential of exogenous ketone supplements in the treatment of 
each psychiatric disease is summarized. This is followed by a brief 
conclusions section with perspective and future outlook.

METABOLISM OF EXOGENOUS KETONE 
SUPPLEMENTS: GENERATION OF 
THERAPEUTIC KETOSIS

Under typical (high carbohydrate) diet conditions, glycogen-
derived glucose is the main energy source of brain cells (43, 
107). However, ketogenic diets, starvation, and fasting result 
in an increased reliance of the brain on fat-derived ketones for 
fuel (43, 44, 108). Free fatty acids are converted into acyl-CoA 
in the liver cells, and subsequently, acyl-CoA is metabolized to 
acetyl-CoA by mitochondrial β-oxidation (Figure 1A). Acetyl-
CoA may generate energy (via Krebs cycle: tricarboxylic acid 
cycle/TCA cycle) or it gets converted into ketone bodies (43–
44, 45, 50). As hepatocytes are not able to utilize the high levels 
of acetyl-CoA derived from ketogenic diet-, starvation-, and 
fasting-evoked increase in fatty acids, under these conditions, 
a large portion of acetyl-CoA can be converted to ketone 
bodies (44, 45, 107). Two acetyl-CoA molecules fuse into 
one acetoacetyl-CoA molecule by acetoacetyl-CoA-thiolase. 
Subsequently, hydroxymethylglutaryl-CoA-synthase (HMGS) 
condenses the third acetyl-CoA molecule with acetoacetyl-
CoA to form hydroxymethylglutaryl-CoA (HMG-CoA) 
(this process, catalyzed by HMGS, is the rate-limiting step of 
ketogenesis) (43–44, 45, 50). AcAc is liberated from HMG-CoA 
by hydroxymethylglutaryl-CoA-lyase (HMGL). AcAc may 
reduce to βHB by a NADH molecule in a βHB dehydrogenase 
(β-OHBD) catalyzed reaction, or, in lesser amounts, a part of 
AcAc may metabolize to acetone by the spontaneous, non-
enzymatic decarboxylation of AcAc (43–44, 45, 50). The 
major circulating water-soluble ketone body is βHB (44, 50). 
AcAc is a chemically unstable molecule, and acetone is a very 
volatile compound (eliminated mainly via respiration from 
the lungs) (44, 50). As the metabolic enzyme succinyl-CoA:3-
ketoacid CoA transferase (SCOT) is not expressed in the liver, 
hepatocytes are not able to consume ketone bodies as an energy 
substrate (45, 50, 52); thus, AcAc and βHB can exit the liver, 
enter the bloodstream, and be distributed to various tissues, 
including the brain, after transport through monocarboxylate 
transporters (43–44, 45, 50). In the mitochondria of brain cells, 
ketone bodies are converted back to acetyl-CoA (Figure  1A) 
(43–44, 45, 50). As the first step of this metabolic pathway, 
βHB oxidizes to AcAc by NAD+ and β-OHBD. AcAc is then 
metabolized to acetoacetyl-CoA, which converts to two acetyl-
CoA molecules (by SCOT and acetoacetyl-CoA-thiolase, 
respectively). Finally, acetyl-CoA molecules enter the Krebs 
cycle as an energy source for ATP synthesis (43–44, 45, 50).
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FIGURE 1 | Mitochondrial ketone body metabolism: ketogenesis in liver cells (hepatocytes) and ketolysis in brain cells (neuron) (A). Main βHB-evoked metabolic 
effects and their consequences, which may evoke alleviating effects on different psychiatric diseases (B) (see text for more detailed putative mechanisms by 
which βHB may evoke alleviating effects on psychiatric diseases). Abbreviations: A, acetone; A1R and A2AR, different types of adenosine receptors; AcAc, 
acetoacetate; ATP, adenosine triphosphate; BBB, blood–brain barrier; βHB, D-beta-hydroxybutyrate (R-3-hydroxybutyrate); β-OHBD, βHB dehydrogenase; COX-2, 
cyclooxygenase-2; ETC, electron transport chain; GABA, gamma-aminobutyric acid; HMGL, hydroxymethylglutaryl-CoA-lyase; HMGS, hydroxymethylglutaryl-CoA-
synthase; IL-1β, interleukin-1β; NADH/FADH2, nicotinamide adenine dinucleotide/flavin adenine dinucleotide; NLRP3, NOD-like receptor pyrin domain 3; NMDAR, 
N-methyl-D-aspartate receptor; SCOT, succinyl-CoA:3-ketoacid CoA transferase; thiolase, acetoacetyl-CoA-thiolase; UCP, uncoupling proteins.
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While a ketogenic diet could potentially confer numerous 
benefits to patients suffering from psychiatric disorders, 
compliance to the diet would likely be low. Reasons include the 
lack of knowledge, support, palatability, and different adverse 
effects such as gastrointestinal side effects (69, 103, 104). 
Most importantly, ketogenic diets must continuously restrict 
carbohydrates (typically 20 g/day) to sustain ketogenesis through 
elevated long-chain fatty acid oxidation (109). Nevertheless, 
the production of ketone bodies from KSs or KEs (e.g., by liver 
alcohol dehydrogenase and/or hydrolysis in the small intestine) 
is not inhibited by carbohydrates; thus, ketone supplements may 
be usable while maintaining a normal diet (105) to generate 
therapeutic ketosis.

After consumption or gavage administration, KEs are fully 
hydrolyzed in the small intestine by esterases, which can be 
transported to the systemic bloodstream, and converted to 
1,3-butanediol. Following this, 1,3-butanediol is metabolized 
to AcAc and βHB in the liver by alcohol and aldehyde 
dehydrogenase (106, 110, 111). Moreover, MCTs/MCT oils 
are hydrolyzed to medium chain fatty acids (e.g., decanoic and 
octanoic acid) by lipases in the gastrointestinal tract, which are 
metabolized to ketone bodies in the liver (112). Thus, similar to 
ketogenic diets, metabolism of exogenous ketone supplements 
may result in increased levels of blood ketone bodies, which may 
serve the energy needs of brain cells (Figure 1A). For example, 
KS supplementation significantly increased the mitochondrial 
activity of both β-OHBD and acetoacetyl-CoA-thiolase in the 
brain of rats (83), and oral administration of exogenous ketone 
supplements is able to evoke and maintain rapid and safe mild 
ketosis in both animals and human (54, 64, 65, 75, 84, 92, 99, 
101, 106, 108).

Unfortunately, MCTs are often not well tolerated because of 
their gastrointestinal side effects (e.g., diarrhea, dyspepsia, and 
flatulence) and supplementation of MCTs generates relatively low 
levels of ketone bodies in the blood (113). Oral administration of 
KEs fully metabolizes to βHB and AcAc and, as a consequence, 
more effectively increases ketone body levels compared to MCTs 
(56). KEs, such as (R)-3-hydroxybutyl-(R)-3-hydroxybutyrate 
and R,S-1,3-butanediol AcAc diester, are well-tolerated, safe, 
and efficient ketogenic agents in both animals and humans 
(56, 99, 105, 106). Moreover, it was demonstrated that a proper 
dose of KS alone (99) or in combination with other exogenous 
ketone supplements, such as KE and MCT (KEKS and KSMCT, 
respectively), may be a safe and efficacious way to achieve ketosis 
(65, 75, 84, 99). Thus, exogenous ketone supplements may be an 
effective alternative to ketogenic diets for therapeutic ketosis.

THERAPEUTIC POTENTIAL OF 
EXOGENOUS KETONE SUPPLEMENTS 
IN THE TREATMENT OF PSYCHIATRIC 
DISEASES

Although there has been remarkable progress in our knowledge 
on the biological effects and mechanisms of action of exogenous 
ketone supplements, their exact mechanisms on CNS diseases are 

largely unknown. It has been demonstrated that an increase in 
ketone body/βHB concentration may modulate neurotransmitter 
balance and release (43, 52, 85), decrease hyperexcitability, reduce 
firing rates of neurons (43, 84, 86), decrease neuroinflammation 
(43, 91), enhance brain energy metabolism (43, 50, 83, 84, 87), 
and provide neuroprotective effects (43, 45, 84, 88, 90), which 
together may protect different physiological processes under 
pathological conditions resulting in CNS diseases, such as 
psychiatric disorders (35–36, 37, 58, 69). Thus, it is possible that 
exogenous ketone supplement-evoked ketosis (65, 75, 84) and 
its significant metabolic effects, as well as their consequences, 
may have both preventive and therapeutic potential as a 
metabolic-based therapy in patients with psychiatric diseases 
(Figure 1B). In spite of the several metabolic alterations, the 
mechanism of action of exogenous ketone supplement-evoked 
ketosis on different psychiatric diseases was not investigated 
comprehensively. As a result, we have only limited results in 
relation to exact links between alleviating effects of ketone 
supplement-generated ketosis and pathological changes in 
psychiatric diseases. Nevertheless, both recent literature results on 
basic pathomechanisms of psychiatric diseases and mechanisms 
of therapeutic effects of exogenous ketone supplement-evoked 
ketosis strongly support the hypothesis that exogenous ketone 
supplement-evoked ketosis may modulate the background 
pathophysiological processes of psychiatric diseases. Indeed, 
an MCT diet caused anxiolytic effects (76) and βHB decreased 
anxiety-related and depressive behaviors in rats and mice (114, 
115). It has also been demonstrated that sub-chronic (7 days) 
oral administration of exogenous ketone supplements, such as 
KE, KS, and KSMCT, evoked an anxiolytic effect in normal rats 
(Sprague–Dawley/SPD rats) and diseased rats (Wistar Albino 
Glaxo/Rijswijk rats: WAG/Rij rats; a rat model of human absence 
epilepsy) on elevated plus maze (EPM) test in correlation with 
increased levels of βHB (75, 95). Elevated ketone body levels 
were demonstrated in schizophrenic patients, suggesting that 
the energy supply of brain shifts from glucose towards ketone 
bodies in this disease (116). Based on correlation between βHB 
plasma levels and symptoms it was suggested that βHB may have 
a protective effect on executive functions in patients treated with 
schizophrenia (117). Other studies presented cases of patients 
with chronic schizoaffective disorders where the KD begin 
helping with mood and psychotic symptoms within 1 month or 
lead to remission of psychotic symptoms (73, 74). It has also been 
suggested that plasma level of βHB is associated with severity of 
depression in human and that βHB-evoked antidepressant-like 
effects may be in relation to its inhibitory effect on NOD-like 
receptor pyrin domain 3 (NLRP3)-induced neuro-inflammatory 
processes. The authors also suggested that modification of βHB 
levels by diet may be a novel therapeutic target for the treatment 
of mood disorders, such as depression (115, 118). In addition, 
ketosis (induction of βHB) may be the primary mediator of the 
therapeutic effect of the ketogenic diet and exogenous ketone 
supplements on different CNS diseases. From this viewpoint, the 
effect of exogenous ketone supplements mimics the ketogenic 
diet (43, 44, 51, 52, 54, 58, 72, 94, 96, 101, 119). Thus, ketogenic 
diet-evoked effects on psychiatric diseases may result (at least 
partly) from beneficial metabolic effects of βHB, for example, 
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on mitochondrial functions, neuronal activity, neurotransmitter 
release, and inflammatory processes (43, 50, 52, 86, 91). Indeed, 
administration of a ketogenic diet not only increased the ketone 
body level but also was associated with improvements in anxiety 
disorder (75, 77), bipolar disorder (120), schizophrenia (42, 70, 
73, 74, 121), depression (77, 122), autism spectrum disorder 
(78, 80, 123), and ADHD (124, 125) in animal models and/or 
humans, suggesting the beneficial effects of exogenous ketone 
supplement-induced ketosis on psychiatric diseases (Figure 1B).

However, thorough investigation of signaling pathways by 
which exogenous ketone supplement-evoked ketosis exerts 
beneficial effects on psychiatric diseases is needed. In the 
following subsection, we provide an overview of the main putative 
basic mechanisms, by which ketone supplement-evoked ketosis 
may alleviate different pathophysiological processes involved in 
psychiatric disorders.

Ketosis-Generated Effects on 
Mitochondrial Functions, Neurotransmitter 
Systems, Inflammatory Processes, and 
Their Consequences: Putative Alleviating 
Influences on Psychiatric Diseases
It has been demonstrated that ketone bodies serve as 
alternative fuel for brain cells when the glucose supply is 
insufficient: ketone bodies improve mitochondrial respiration 
and enhance mitochondrial ATP synthesis (Figure 1B) (47, 
126). Increased mitochondrial ATP production may promote 
the repolarization of neuronal membrane after stimulation 
by means of Na+/K+ ATPase and may modulate the 
neurotransmitter levels (119). In addition, βHB may inhibit 
vesicular glutamate transporters (127). This effect, together 
with increased ATP production, decreases glutamate loading 
to vesicles and glutamate release and, as a consequence, 
suppresses neuronal excitability (68, 119, 127).

It was recently demonstrated that βHB inhibits the activity 
of N-type Ca2+ channels in sympathetic nerve terminals and 
may decrease the release of noradrenaline via activation of its 
G-protein-coupled receptor free fatty acid receptor 3 (FFAR3) 
(128). Increased levels of ketone bodies, such as βHB, may 
evoke other changes in metabolic pathways, such as inhibition 
of glycolysis (43). An inhibition of glycolysis may result in 
decreased levels of cytosolic ATP and, as a consequence, 
increased activity of ATP-sensitive potassium (KATP) channels 
generating hyperpolarization of neuronal membrane and 
decrease in neuronal activity (43, 129). As it was demonstrated, 
ketosis not only decreases glutamate release and extracellular 
glutamate levels and enhances the GABAergic effects by means 
of increased GABA levels and GABAA receptor activity (43, 68) 
but also increases adenosine levels (130) and may modulate 
metabolism of monoamines (Figure 1B). For example, increased 
levels of noradrenaline in mice brain (131) and decreased 
levels of metabolites of monoamine dopamine and serotonin 
(homovanillic acid/HVA and 5-hydroxyindole acetic acid/5-
HIAA, respectively) in the human cerebrospinal fluid (132) 
were demonstrated under a ketotic state. Increased levels of 
extracellular adenosine lead to increased activity of adenosine 

receptors and may decrease hyperexcitability via A1Rs, increase 
hyperpolarization of neuronal membrane, and decrease neuronal 
activity (133, 134). In addition, adenosine decreases the energy 
demand of brain tissue (e.g., via A1R and A2AR) (135), modulates 
immune system functions (e.g., activation of A2AR decreases the 
inflammation-induced cytokine production from microglial 
cells) (136), and has a neuroprotective effect (e.g., evokes a 
decrease in oxidative stress and attenuates the harmful influence 
of ROS on brain cells via A1R) (137, 138).

β-Hydroxybutyrate may exert its effects on numerous 
targets, including oxidative stress mediators (e.g., by inhibition 
of histone deacetylases and increased activity of antioxidant 
enzymes) and metabolic rate (e.g., increased NAD+–NAD+/
NADH ratio) directly and/or indirectly via its G-protein-
coupled receptors, such as hydroxycarboxylic acid receptor 
2 (HCAR2, also known as PUMA-G or GPR109 receptor) 
(45, 90, 139, 140). As an endogenous ligand, βHB activates 
the HCAR2 receptor expressed on, for example, microglial 
cells (141). HCAR2 mediates the inhibitory effects of βHB on 
neurodegeneration, microglial activation, and inflammatory 
processes [e.g., decreases the expression/level of interleukins, 
such as interleukin-1β (IL-1β), and lipopolysaccharide/LPS-
induced increase in cyclooxygenase-2/COX-2 activity and 
interleukin levels] (141–143) (Figure 1B). NOD-like receptor 
pyrin domain 3 inflammasome is a multiprotein complex, which 
may evoke cleavage of pro-IL-1β to its active form (IL-1β) for 
secretion by caspase-1 (144, 145). It was demonstrated that βHB 
decreases inflammatory processes likely through inhibition 
of NLRP3: βHB decreased not only the expression of NLRP3 
and caspase-1 but also the level/release of proinflammatory 
cytokines, such as IL-1β (91, 146).

In general, oxidative stress damages proteins, lipids, and 
nucleic acids. One putative downstream effect of this damage is 
the opening of the mitochondrial permeability transition (mPT) 
pore and, as a consequence, activation of the apoptotic cascade 
processes pursuant to release of cytochrome c to the cytoplasm 
(147). It was demonstrated that increased production of ROS may 
activate mPT pore (97, 147). Ketone bodies decreased oxidative 
stress and ROS formation by enhancing complex I (NADH 
dehydrogenase)-driven mitochondrial respiration (140). It has 
also been demonstrated that KE increased both ketone body 
levels and expression of mitochondrial uncoupling proteins 
(UCPs; e.g., UCP 4 and UCP 5 in rat brain), which can decrease 
the production of ROS (50, 148) (Figure 1B). In addition, it 
was suggested that βHB not only prevents neuronal loss but 
also preserves synaptic function: βHB mitigates effects, which 
may evoke cell death/apoptosis (e.g., glutamate excitotoxicity, 
enhanced ROS production, impaired mitochondrial energetic 
functions, pathogenic mutations on mitochondrial DNA, and 
activation of mPT pore) (44, 97, 119, 149), and βHB may restore 
impairment of hippocampal long-term potentiation (150).

The changes induced by ketosis may lead to enhanced brain 
energy metabolism, promotion of repolarization of neuronal 
membrane, neuronal hyperpolarization, decreased hyperexcitability 
and neuronal firing, modulation of neurotransmitter release/
balance, neuroprotective effects, and decreased inflammatory 
processes (Figure 1B). Downstream effects may include increased 
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GABA and ATP/adenosine levels, decreased levels of glutamate 
and IL-1β, and reductions in neuronal excitability and ROS 
formation. Based on these putative alleviating effects, which may 
have therapeutic potential in the treatment of different psychiatric 
diseases, this subsection is followed by a brief overview of the main 
pathological changes in different psychiatric diseases, which may 
be modulated or improved by ketosis-evoked beneficial effects 
and their consequences. Currently, we lack detailed information 
for understanding the exact mechanisms by which ketosis evokes 
beneficial effects on psychiatric disorders. However, we can be 
reasonably confident that the alleviating effects of exogenous 
ketone supplements on these disorders affect several interacting 
factors, including mitochondrial function, neurotransmitter levels, 
and inflammatory processes.

Anxiety Disorders
An increasing body of evidence suggests that dysregulation of the 
glutamatergic, serotonergic, purinergic, and GABAergic systems 
plays a role in the pathophysiology of anxiety disorders (33, 34, 
151–153). For example, inhibition of NMDA and AMPA receptors 
by their antagonists (e.g., DL-2-amino-5-phosphonovaleric 
acid/APV and 6-cyano-7-nitroquinoxaline-2,3-dione/CNQX, 
respectively) fully or partially blocked the expression and/
or acquisition of fear conditioning (30, 154). Activation of the 
serotonergic system (e.g., via increased levels of serotonin by 
selective serotonin reuptake inhibitors/SSRIs and activation of 
serotonin 5-HT1A receptors by buspirone or tandospirone) and 
increased activity of adenosinergic system (e.g., via activation 
of A1 type of adenosine receptors/A1R) have an anxiolytic effect 
(34, 155). Moreover, enhanced GABAergic neurotransmission 
evoked an anxiolytic effect, whereas decreased GABAergic 
transmission generated anxiogenic responses in animals (151, 
153, 156). Altered functions are present in many regions, 
including the extended amygdala, ventromedial prefrontal 
cortex, hippocampus, hypothalamus, and the midbrain, and 
changed connections between these areas are implicated in the 
pathophysiology of anxiety disorders (157–159). Specific changes, 
such as underactivation (e.g., in ventromedial prefrontal cortex), 
overactivaton (e.g., in amygdala), and deficient functional 
connectivity (e.g., between hippocampus and amygdala), have 
also been demonstrated (157, 158, 160, 161). Changes in gray 
matter volume (e.g., in the right orbitofrontal cortex, amygdala, 
and hippocampus) (160, 162, 163), as well as dysfunction or 
hyperactivation of HPA axis and inflammatory system (e.g., 
increased level of proinflammatory cytokines) (14, 164), may 
have a role in pathophysiology of anxiety disorders. It was also 
demonstrated that mitochondrial dysfunctions and oxidative 
stress may be key factors in the emergence of anxiety disorders 
(165, 166).

Schizophrenia
It has been demonstrated that alterations in the neurotransmitter 
systems governed by GABA, glutamate, and the monoamines 
are involved in the development of schizophrenia (7, 23, 27, 32, 
167–169). For example, in the prefrontal cortex, which partially 
mediates the negative symptoms of schizophrenia, low serotonin 
and dopamine levels were detected (7, 23). Cognitive symptoms 

may be linked with decreased level of GABA and serotonin 
(e.g., in the dorsolateral prefrontal cortex) (7, 170). Moreover, 
decrease in serotonin level was demonstrated in amygdala, 
which may lead to aggressive symptoms (7). It was concluded 
that, among others, hypofunction of the inhibitory GABAergic 
interneurons and changes in activity of implicated brain areas 
(e.g., because of decreased activity of inhibitory effects and 
imbalance between inhibitory/excitatory processes) have a 
role in the pathophysiology of schizophrenia (7, 167). Another 
recent study using an acute NMDA receptor hypofunction 
model of schizophrenia showed that feeding C57BL/6 mice a 
low carbohydrate/high-fat KD for 7 weeks prevented a variety of 
behavioral abnormalities induced by pharmacological inhibition 
of NMDA glutamate receptors (42). In the study, they found a 
lack of correlation between the measured prepulse inhibition of 
startle and body weight changes, providing evidence against the 
role of calorie restriction in its mechanism of action (42). Case 
studies on human patients with schizophrenia also supported the 
efficacy of using KD to improve symptoms (73, 74). Reduction in 
the volume of brain areas encompassing cortical gray and white 
matter (e.g., in amygdala and hippocampus/sensorimotor and 
dorsolateral prefrontal cortices) (171–173), gliosis (174), and 
increased neuronal apoptosis (7, 175) were also demonstrated 
in patients with schizophrenia. A great deal of evidence suggests 
that microglial activation, oxidative stress (e.g., increase in 
ROS activity), and mitochondrial dysfunction (e.g., changes in 
activity of complex I and cytochrome-c-oxidase/IV of electron 
transport chain) may also be involved in the pathophysiology of 
schizophrenia (167, 176–178). Increased activation of HPA axis 
by psychological stress, inflammatory processes, and increased 
level of cytokines (e.g., tumor necrosis factor alpha/TNF-α and 
IL-1β), as well as enhanced levels of glutamate and dopamine 
auto-oxidation, could lead to enhanced production of ROS and 
subsequently neurodegeneration and apoptosis (7, 167, 178–180).

Major Depressive Disorder
Structural brain alterations, such as decreased volume and 
cell number of brain areas (e.g., in hippocampus and several 
cortical areas) (3, 181–183) and abnormalities in activation or 
connectivity of brain structures and networks (e.g., chronic 
hyperactivity of limbic centers and brainstem) (13, 22, 184–186), 
may underlie the functional and behavioral changes observed 
in depressed patients. It has been demonstrated that changes in 
several components, including the glutamatergic system (e.g., 
increased glutamate level) (29), monoaminergic system (e.g., 
decrease in the level of serotonin, noradrenaline, and dopamine) 
(3, 13, 24, 187, 188), GABAergic system (e.g., reduced plasma 
and cerebrospinal fluid GABA levels) (189, 190), and purinergic 
system (e.g., overexpression of A2A type of adenosine receptors/
A2AR) (28) have a role in the pathophysiology of major 
depressive disorder. Activation of microglia and astrocytes and 
inflammatory pathways (14, 164, 191, 192) may be associated 
with major depressive disorder. For example, increased activation 
and expression of NLRP3 inflammasome and interleukins (e.g., 
IL-1β) were revealed in both animal models and patients with 
depression (13, 193, 194). Hyperactivity of HPA system was also 
demonstrated (195). Neurodegeneration and neuronal death  
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(e.g., through increased oxidative/nitrosative stress) and 
alterations in mitochondrial functions (e.g., decreased ATP 
production as well as enhanced apoptosis and oxidative stress) 
(35, 177, 196) also play a role in the emergence of major 
depressive disorder. It has been demonstrated that enhancement 
of inflammatory processes is associated with depression by 
modulation of different neurotransmitter systems: for example, 
inflammatory cytokines (e.g., IL-1β) reduce synaptic availability 
of monoamines and increase excitotoxicity (via extrasynaptic 
NMDA receptors) by increasing levels of extracellular glutamate 
(164, 197, 198). Moreover, cytokines may evoke decreased 
motivation and anhedonia via different pathways (e.g., by 
decreased release of dopamine in the basal ganglia) (164, 199).

Bipolar Disorder
It has been demonstrated that imbalance in monoaminergic 
neurotransmitter system (e.g., serotonergic, dopaminergic, 
and noradrenergic) (200–202), GABAergic system (e.g., 
decreased GABAergic transmission) (190), purinergic system 
(e.g., increased level of uric acid and reduced adenosinergic 
activity at A1Rs) (31), and glutamatergic system (e.g., 
increased glutamate levels and NMDA receptor activity) (29) 
are associated with bipolar disorder. These alterations may 
be associated with mitochondrial dysfunction (e.g., deficit in 
activity of complexes I and IV), apoptosis, increase in ROS, 
oxidative damage, hyperexcitability (5, 177, 203, 204), and, 
as a consequence, decrease in glial cell or neuron number 
and gray matter, as well as changes in connectivity between 
implicated brain areas (e.g., hippocampus, prefrontal cortex, 
and amygdala) (205–207). Changes in endocrine functions 
(e.g., dysregulation of HPA axis) and inflammatory processes 
(e.g., increased proinflammatory cytokine levels, such 
as IL-1β) were demonstrated in association with bipolar 
disorder (203, 208).

Autism Spectrum Disorder
It has been demonstrated that agenesis of corpus callosum, 
changes in brain volume, thinning of several brain cortical 
areas (e.g., in the frontal parietal lobe), and decreased 
functional connectivity between brain areas (e.g., within 
frontal cortex) contribute to pathophysiology of autism 
spectrum disorder (209–212). It was also demonstrated 
that dysfunction in glutamatergic system (e.g., exaggerated 
signaling) (213–215) and GABAergic system (e.g., decreased 
GABA receptor expression and GABA-evoked inhibitory 
effects) (215, 216) may have a role in the pathophysiology 
of autism spectrum disorder by alterations in the excitation/
inhibition balance. In addition, decreased level of serotonin/
adenosine in implicated brain areas (e.g., medial frontal 
cortex) have also been demonstrated/suggested in this disease 
(25, 217–220). Impaired immune response, inflammation, and 
oxidative stress may be causative factors of autism spectrum 
disorder (15, 221). In fact, recent studies suggest that autism 
spectrum disorder is associated with inflammation (e.g., 
activation of glial cells and increased levels of cytokines) 
(222–224), mitochondrial dysfunction, and oxidative stress 
(e.g., increased ROS activity) (79, 225–227).

Attention Deficit/Hyperactivity Disorder
Reduction of brain volume and gray matter (e.g., in putamen 
and caudate nucleus) and underactivation or hyperactivation 
of different brain networks (e.g., in the frontoparietal and 
ventral attention network and the somatomotor system) were 
demonstrated in patients with ADHD (228, 229). Numerous 
studies have shown that increased glutamatergic tone/glutamate 
level (230), dopamine hypofunction (e.g., decreased stimulation-
evoked release of dopamine) (26), and changes in GABAergic 
(e.g., decrease in GABA level) (230, 231), noradrenergic, and 
serotonergic system (16, 232–235) in the implicated brain areas 
may be causative factors of ADHD. Furthermore, increased 
oxidative stress (e.g., enhanced production of ROS) was 
demonstrated in a rat model of ADHD (236).

CONCLUSION

The effects of nutritional ketosis on CNS diseases, whether 
through diet or supplementation, have not been fully investigated. 
Consequently, only limited results have demonstrated the 
existence of alleviating effects of exogenous ketone supplement 
administration on animal models of psychiatric diseases and 
patients with psychiatric disorders. Nevertheless, there are 
several common pathophysiological metabolic alterations, such 
as changes in neurotransmitter release, increased inflammatory 
processes, abnormal cerebral glucose metabolism, and decreased 
mitochondrial-associated brain energy metabolism, which 
may have a role in the emergence of psychiatric diseases. 
Consequently, ketogenic interventions that can modulate a 
broad array of metabolic and signaling changes underlying the 
pathophysiology of psychiatric diseases may alleviate the onset 
of symptoms.

Based on our review of the literature, we hypothesize that 
utilizing exogenous ketone supplements alone or with ketogenic 
diet, either as a primary or an adjunctive therapy for selected 
psychiatric disorders, may potentially be an effective treatment. 
Thus, adding ketone supplements as an additional agent to the 
therapeutic regimen may alleviate symptoms of psychiatric 
diseases via modulation of different metabolic routes implicated 
in psychiatric disorders. Therefore, detailed investigation of 
exogenous ketone supplement-evoked direct and/or indirect 
alterations in molecular pathways and signaling processes 
associated with psychiatric diseases is needed.

The use of exogenous ketone supplements in psychiatric 
diseases is only in its infancy. Nevertheless, our increasing 
understanding of how exogenous ketone supplement-evoked 
ketosis/βHB exerts its effects on CNS diseases, combining with 
new results on pathophysiology of psychiatric diseases and their 
complex interplay with each other, suggests that exogenous ketone 
supplements may be ideal and effective adjuvants to drugs used 
in the treatment of psychiatric diseases. Thus, because exogenous 
ketone supplements modulate endogenous processes, their 
administration is a safe method to promote disease-alleviating 
effects without considerable risk, as well as minimal or no side 
effects compared to pharmacological treatments. Consequently, 
exogenous ketone supplements may help to both manage the 
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side effects and increase the efficacy of drugs used in psychiatric 
diseases, especially in cases of treatment resistance.

Future research should explore the effects of exogenous 
ketones on the metabolic processes that underlie the diseases 
leading to psychiatric disorders in order to restore abnormal 
cerebral glucose and energy metabolism. Moreover, new studies 
are needed to investigate the effects, therapeutic efficacy, and 
exact mechanism(s) of action of exogenous ketone supplements 
alone or in combination with a ketogenic diet not only on 
animal models of psychiatric diseases, but also on patients 
with different psychiatric disorders. Future studies are needed 
to reveal which factors (e.g., age, sex, lifestyle, drugs, other 
diseases, and so on) can modify the effects of exogenous ketone 
supplements on psychiatric diseases; to develop new, more 
effective, and safe ketone supplements, which can be used 
in special ketogenic foods for treatment of CNS disorders, 
including psychiatric diseases. There is urgent need to develop 
therapeutic strategies and broadly accepted protocols guiding 
the administration of different types and combinations of 
exogenous ketone supplements. As a result of new studies in 
the near future, a better understanding of the pathophysiology 
of different psychiatric diseases and the connections between 

the underlying metabolic/signaling pathways may promote the 
development of novel metabolism-based adjuvant therapies, 
such as the administration of exogenous ketone supplements 
against psychiatric diseases.
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