45 research outputs found

    All-integrated Terahertz modulators

    Get PDF
    erahertz (0.1–10 THz corresponding to vacuum wavelengths between 30 μm and 3 mm) research has experienced impressive progress in the last few decades. The importance of this frequency range stems from unique applications in several fields, including spectroscopy, communications, and imaging. THz emitters have experienced great development recently with the advent of the quantum cascade laser, the improvement in the frequency range covered by electronic-based sources, and the increased performance and versatility of time domain spectroscopic systems based on full-spectrum lasers. However, the lack of suitable active optoelectronic devices has hindered the ability of THz technologies to fulfill their potential. The high demand for fast, efficient integrated optical components, such as amplitude, frequency, and polarization modulators, is driving one of the most challenging research areas in photonics. This is partly due to the inherent difficulties in using conventional integrated modulation techniques. This article aims to provide an overview of the different approaches and techniques recently employed in order to overcome this bottleneckEngineering and Physical Sciences Research Council (Grant No. EP/J017671/1, Coherent Terahertz Systems

    Quantum key distribution over multicore fiber

    Get PDF
    We present the first quantum key distribution (QKD) experiment over multicore fiber. With space division multiplexing, we demonstrate that weak QKD signals can coexist with classical data signals launched at full power in a 53 km 7-core fiber, while showing negligible degradation in performance. Based on a characterization of intercore crosstalk, we perform additional simulations highlighting that classical data bandwidths beyond 1Tb/s can be supported with high speed QKD on the same fiber.S.J.K. acknowledges support from the EPSRC CDT in Photonic Systems Development

    Amplitude stabilization and active control of a terahertz quantum cascade laser with a graphene loaded split-ring-resonator array

    Get PDF
    We demonstrate the amplitude stabilization of a 2.85 THz quantum cascade laser with a graphene loaded split-ring-resonator array acting as an external amplitude modulator. The transmittance of the modulator can be actively changed by modifying the graphene conductivity via electrostatic back-gating. The modulator operates at room temperature and is capable of actively modulating the quantum cascade laser power level and thus stabilizing the power output via a proportional-integral-derivative feedback control loop. The stability was enhanced by more than 10 times through actively tuning the modulation. Furthermore, this approach can be used to externally control the laser power with a high level of stability.This work is supported by funding from the Engineering and Physical Sciences Research Council (Grant No. EP/P021859/1, HyperTerahertz–High precision terahertz spectroscopy and microscopy)

    Fast Room-Temperature Detection of Terahertz Quantum Cascade Lasers with Graphene-Loaded Bow-Tie Plasmonic Antenna Arrays

    Get PDF
    We present a fast room-temperature terahertz detector based on interdigitated bow-tie antennas contacting graphene. Highly efficient photodetection was achieved by using two metals with different work functions as the arms of a bow-tie antenna contacting graphene. Arrays of the bow-ties were fabricated in order to enhance the responsivity and coupling of the incoming light to the detector, realizing an efficient imaging system. The device has been characterized and tested with a terahertz quantum cascade laser emitting in single frequency around 2 THz, yielding a responsivity of ∼34 μA/W and a noise-equivalent power of ∼1.5 × 10−7^{-7} W/Hz1/2^{1/2}.R.D., Y.R., and H.E.B. acknowledge financial support from the Engineering and Physical Sciences Research Council (Grant No. EP/J017671/1, Coherent Terahertz Systems). S.H. acknowledges funding from EPSRC (Grant No. EP/K016636/1, GRAPHTED). H.L. and J.A.Z. acknowledge financial support from the EPSRC (Grant No. EP/L019922/1). J.A.A.-W. acknowledges a Research Fellowship from Churchill College, Cambridge. H.J.J. thanks the Royal Commission for the Exhibition of 1851 for her Research Fellowship.This is the final version of the article. It first appeared from American Chemical Society via https://doi.org/10.1021/acsphotonics.6b0040

    Graphene-Integrated Metamaterial Device for All-Electrical Polarization Control of Terahertz Quantum Cascade Lasers

    Get PDF
    Optoelectronic modulators that operate by the electrical tuning of plasmonic resonator structures have demonstrated fast (>MHz) manipulation of terahertz (THz) radiation for communications, imaging, and spectroscopy applications. Among this class of THz device, chiral metamaterial-based polarization modulators have attracted increasing attention due to the importance of THz polarization control for chemistry, biology, and spectroscopy applications, as well as for THz communication protocols. In this paper, active polarization modulation of a THz quantum cascade laser is demonstrated by the electrical tuning of a 2D chiral metamaterial array. The operating principle of this device is based on an electromagnetically induced transparency analogue, produced by the coupling between a bright resonator and two dark resonators. The orientation of these resonators is such that a radiating electric dipole orthogonal to the incident electric field polarization is induced, causing a rotation of the polarization angle of the transmitted radiation. By variably dampening the dark resonators using graphene, the coupling condition is electrically modulated such that continuous tuning of the transmitted polarization angle is achieved. This device, operating at room temperature, can be readily implemented as a fast, optoelectronic, polarization modulator with a maximum tuning range of 20 degrees at 1.75 THz, with demonstrated reconfiguration speeds of >5 MHz

    Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays

    Get PDF
    We present a fast room temperature terahertz detector based on graphene loaded plasmonic antenna arrays. The antenna elements, which are arranged in series and are shorted by graphene, are contacting source and drain metallic pads, thus providing both the optical resonant element and the electrodes. The distance between the antenna's arms of approximately 300 nm allows a strong field enhancement in the graphene region, when the incident radiation is resonant with the antennas. The current passing through the source and drain is dependent on the graphene's conductivity, which is modified by the power impinging onto the detector as well as from the biasing back-gate voltage. The incident radiation power is thus translated into a current modification, with the main detection mechanism being attributed to the bolometric effect. The device has been characterized and tested with two bound to continuum terahertz quantum cascade lasers emitting at a single frequency around 2 THz and 2.7 THz yielding a maximum responsivity of ~2 mA W−1^{−1}.RD, HEB and DAR acknowledge financial support from the Engineering and Physical Sciences Research Council (Grant No. EP/J017671/1, Coherent Terahertz Systems). SH acknowledges funding from EPSRC (Grant No. EP/K016636/1, GRAPHTED). KN acknowledges the University of Cambridge Nanoscience Doctoral Training Centre (EPSRC EP/G037221/1) for financial support

    Architecture for one-shot compressive imaging using computer-generated holograms.

    No full text
    We propose a synchronous implementation of compressive imaging. This method is mathematically equivalent to prevailing sequential methods, but uses a static holographic optical element to create a spatially distributed spot array from which the image can be reconstructed with an instantaneous measurement. We present the holographic design requirements and demonstrate experimentally that the linear algebra of compressed imaging can be implemented with this technique. We believe this technique can be integrated with optical metasurfaces, which will allow the development of new compressive sensing methods

    An implementation of one-shot compressive imaging using a diffractive optical element

    No full text
    © 2015 Optical Society of America. We propose and demonstrate a new implementation of compressive imaging using a diffractive optical element. This method is mathematically equivalent to existing sequential methods (Takhar et al. Proc. SPIE 6065, 2006), but utilises a static optical element to produces a spatially distributed spot array. It is envisaged that this method could be used with optical metasurfaces to perform instaneous hyperspectral and polarisation-dependent compressive imaging
    corecore