8 research outputs found

    Antiviral, antimicrobial and antibiofilm activity of selenoesters and selenoanhydrides

    Get PDF
    Selenoesters and the selenium isostere of phthalic anhydride are bioactive selenium compounds with a reported promising activity in cancer, both due to their cytotoxicity and capacity to reverse multidrug resistance. Herein we evaluate the antiviral, the biofilm inhibitory, the antibacterial and the antifungal activities of these compounds. The selenoanhydride and 7 out of the 10 selenoesters were especially potent antiviral agents in Vero cells infected with herpes simplex virus-2 (HSV-2). In addition, the tested selenium derivatives showed interesting antibiofilm activity against Staphylococcus aureus and Salmonella enterica serovar Typhimurium, as well as a moderate antifungal activity in resistant strains of Candida spp. They were inactive against anaerobes, which may indicate that the mechanism of action of these derivatives depends on the presence of oxygen. The capacity to inhibit the bacterial biofilm can be of particular interest in the treatment of nosocomial infections and in the coating of surfaces of prostheses. Finally, the potent antiviral activity observed converts these selenium derivatives into promising antiviral agents with potential medical applications.

    Selenocompounds as Novel Antibacterial Agents and Bacterial Efflux Pump Inhibitors

    Get PDF
    Bacterial multidrug resistance is becoming a growing problem for public health, due to the development and spreading of bacterial strains resistant to antimicrobials. In this study, the antibacterial and multidrug resistance reversing activity of a series of seleno-carbonyl compounds has been evaluated. The effects of eleven selenocompounds on bacterial growth were evaluated in Staphylococcus aureus, methicillin resistant S. aureus (MRSA), Enterococcus faecalis, Escherichia coli, and Chlamydia trachomatis D. The combination effect of compounds with antibiotics was examined by the minimum inhibitory concentration reduction assay. Their efflux pump (EP) inhibitory properties were assessed using real-time fluorimetry. Relative expressions of EP and quorum-sensing genes were studied by quantitative PCR. Results showed that a methylketone selenoester had remarkable antibacterial activity against Gram-positive bacteria and potentiated the activity of oxacillin in MRSA. Most of the selenocompounds showed significant anti-chlamydial effects. The selenoanhydride and the diselenodiester were active inhibitors of the AcrAB-TolC system. Based on these results it can be concluded that this group of selenocompounds can be attractive potential antibacterials and EP inhibitors. The discovery of new derivatives with a significant antibacterial activity as novel selenocompounds, is of high impact in the fight against resistant pathogen

    Antiviral, antimicrobial and antibiofilm activity of selenoesters and selenoanhydrides

    No full text
    Selenoesters and the selenium isostere of phthalic anhydride are bioactive selenium compounds with a reported promising activity in cancer, both due to their cytotoxicity and capacity to reverse multidrug resistance. Herein we evaluate the antiviral, the biofilm inhibitory, the antibacterial and the antifungal activities of these compounds. The selenoanhydride and 7 out of the 10 selenoesters were especially potent antiviral agents in Vero cells infected with herpes simplex virus-2 (HSV-2). In addition, the tested selenium derivatives showed interesting antibiofilm activity against Staphylococcus aureus and Salmonella enterica serovar Typhimurium, as well as a moderate antifungal activity in resistant strains of Candida spp. They were inactive against anaerobes, which may indicate that the mechanism of action of these derivatives depends on the presence of oxygen. The capacity to inhibit the bacterial biofilm can be of particular interest in the treatment of nosocomial infections and in the coating of surfaces of prostheses. Finally, the potent antiviral activity observed converts these selenium derivatives into promising antiviral agents with potential medical applications.

    Selenocompounds as Novel Antibacterial Agents and Bacterial Efflux Pump Inhibitors

    No full text
    Bacterial multidrug resistance is becoming a growing problem for public health, due to the development and spreading of bacterial strains resistant to antimicrobials. In this study, the antibacterial and multidrug resistance reversing activity of a series of seleno-carbonyl compounds has been evaluated. The effects of eleven selenocompounds on bacterial growth were evaluated in Staphylococcus aureus, methicillin resistant S. aureus (MRSA), Enterococcus faecalis, Escherichia coli, and Chlamydia trachomatis D. The combination effect of compounds with antibiotics was examined by the minimum inhibitory concentration reduction assay. Their efflux pump (EP) inhibitory properties were assessed using real-time fluorimetry. Relative expressions of EP and quorum-sensing genes were studied by quantitative PCR. Results showed that a methylketone selenoester had remarkable antibacterial activity against Gram-positive bacteria and potentiated the activity of oxacillin in MRSA. Most of the selenocompounds showed significant anti-chlamydial effects. The selenoanhydride and the diselenodiester were active inhibitors of the AcrAB-TolC system. Based on these results it can be concluded that this group of selenocompounds can be attractive potential antibacterials and EP inhibitors. The discovery of new derivatives with a significant antibacterial activity as novel selenocompounds, is of high impact in the fight against resistant pathogen
    corecore