105 research outputs found

    Many roads, one destination for T cell progenitors

    Get PDF
    The thymus manufactures new T cells throughout life but contains no self-renewing potential. Instead, replenishment depends on recruitment of bone marrow–derived progenitors that circulate in the blood. Attempts to identify thymic-homing progenitors, and to assess the degree to which they are precommitted to the T cell lineage, have led to complex and sometimes conflicting results. As described here, this probably reflects the existence of multiple distinct types of T cell lineage progenitors as well as differences in individual experimental approaches

    Src Homology 2–containing 5-Inositol Phosphatase (SHIP) Suppresses an Early Stage of Lymphoid Cell Development through Elevated Interleukin-6 Production by Myeloid Cells in Bone Marrow

    Get PDF
    The Src homology (SH)2–containing inositol 5-phosphatase (SHIP) negatively regulates a variety of immune responses through inhibitory immune receptors. In SHIP(−/−) animals, we found that the number of early lymphoid progenitors in the bone marrow was significantly reduced and accompanied by expansion of myeloid cells. We exploited an in vitro system using hematopoietic progenitors that reproduced the in vivo phenotype of SHIP(−/−) mice. Lineage-negative marrow (Lin(−)) cells isolated from wild-type mice failed to differentiate into B cells when cocultured with those of SHIP(−/−) mice. Furthermore, culture supernatants of SHIP(−/−) Lin(−) cells suppressed the B lineage expansion of wild-type lineage-negative cells, suggesting the presence of a suppressive cytokine. SHIP(−/−) Lin(−) cells contained more IL-6 transcripts than wild-type Lin(−) cells, and neutralizing anti–IL-6 antibody rescued the B lineage expansion suppressed by the supernatants of SHIP(−/−) Lin(−) cells. Finally, we found that addition of recombinant IL-6 to cultures of wild-type Lin(−) bone marrow cells reproduced the phenotype of SHIP(−/−) bone marrow cultures: suppression of B cell development and expansion of myeloid cells. The results identify IL-6 as an important regulatory cytokine that can suppress B lineage differentiation and drive excessive myeloid development in bone marrow

    The Density of CD10 Corresponds to Commitment and Progression in the Human B Lymphoid Lineage

    Get PDF
    Requirements for human B lymphopoiesis are still poorly understood, and that has hampered investigation of differentiation events. For example, there are few cell surface antigens that can be used as milestones of lineage progression. The CD10 ectoenzyme is one such marker and has been used to define CLP, but we found substantial tissue specific variations in CD10 levels, and there was no information about how that corresponded to differentiation options.The aim of the present study was to use recently developed culture methods to assess the nature and differentiation potential of progenitors sorted according to CD10 density from umbilical cord blood (CB), adult bone marrow (BM) or G-CSF mobilized peripheral blood (PB). Many CD34(+) cells in BM express high levels of CD10, while low or low/negative CD10 densities were found on CD34(+) cells in CB or G-CSF mobilized PB, respectively. The relative abundance of CD10(Lo) versus CD10(Hi) cells only accounts for some CB versus BM differences. Almost all of the CD34(+) CD10(Hi) cells expressed CD19 and lymphocyte transcription factors and corresponded to loss of myeloid potential. A high degree of immunoglobulin D(H)-J(H) gene rearrangements was characteristic only of the CD10(Hi) subset. In contrast, the CD34(+) CD10(Lo) progenitors efficiently produced plasmacytoid and conventional dendritic cells as well as myeloid cells. These findings suggest a positive correlation between CD10 density and degree of differentiation. Although freshly isolated CD34(+) CD10(Hi) cells were in cycle, those from CB or BM expanded poorly in culture, suggesting regulators of populations remain to be discovered.Steps in human B lymphopoiesis have not been sufficiently studied, and we now show that increased CD10 expression corresponds to differentiation potential and stage. CD34(+) CD10(Hi) progenitors are obviously in the B lineage but may have progressed beyond the point where they can be expanded in culture

    Stromal-Cell and Cytokine-Dependent Lymphocyte Clones Which Span the Pre-B- to B-Cell Transition

    Get PDF
    Five stromal-cell-dependent lymphocyte clones are described that correspond to late pre-B or early B-cell stages of differentiation.They are useful for determining the molecular requirements for pre-B replication, for studying the stromal cells that supply those factors, and for delineating the final sequence of differentiation events as newly formed lymphocytes prepare to exit the bone marrow. The efficiency of lymphocyte growth at limiting dilution varied substantially on different stromal-cell clones and may reflect functional heterogeneity of stromal cells. Most lymphocyte clones were similar to uncloned lymphocytes from Whitlock-Witte cultures in that they responded only transiently to interleukin-7 (IL-7) and then died, unless maintained on a stromal-cell clone. One unusual lymphocyte clone (2E8) was propagated for more than 1 year in IL-7 alone and was selectively responsive to that cytokine. Most of the lymphocyte clones were not tumorigenic in immunodeficient mice. However, one pre-B clone (1A9)’grew autonomously in culture when held at high density, responded to conditioned medium from a number of cell lines, and was tumorigenic. Tumors derived from this clone were infiltrated by stromal cells and lymphocytes taken from the tumors' retained characteristics of the original clone. Ly-6 antigens were inducible on 2E8 and 1A9 cells, but the lymphocytes were otherwise arrested in differentiation. The 2E8 cells had rearranged and expressed κ light-chain genes but displayed them on the surface along with surrogate light chains and μ heavy chains. Thus, expression of authentic Tight chain need not coincide with termination of surrogate light-chain utilization in newly formed B cells. Several glycoproteins have recently been demonstrated to be associated with surface immunoglobulin (Ig) on mature B-lineage cells and plasma-cell tumors. We now show that one member of this family (approximately 33 kD) was associated with the μ+surrogate light-chain complex on the 1A9 pre-B-cell clone. When compared to mature B lymphomas, fewer bands coprecipitated with the surface-labeled Ig isolated from pre-B- and early B-cell lines, suggesting that components of the antigen receptor are sequentially acquired during development. The normal replication and differentiation of pre-B cells is probably regulated by complex interactions with multiple cytokines and matrix components of the marrow microenvironment. Cloned lymphocyte lines that are dependent on stromal cells should continue to be important tools for molecular definition of those interactions

    The Satb1 Protein Directs Hematopoietic Stem Cell Differentiation toward Lymphoid Lineages

    Get PDF
    SummaryHow hematopoietic stem cells (HSCs) produce particular lineages is insufficiently understood. We searched for key factors that direct HSC to lymphopoiesis. Comparing gene expression profiles for HSCs and early lymphoid progenitors revealed that Satb1, a global chromatin regulator, was markedly induced with lymphoid lineage specification. HSCs from Satb1-deficient mice were defective in lymphopoietic activity in culture and failed to reconstitute T lymphopoiesis in wild-type recipients. Furthermore, Satb1 transduction of HSCs and embryonic stem cells robustly promoted their differentiation toward lymphocytes. Whereas genes that encode Ikaros, E2A, and Notch1 were unaffected, many genes involved in lineage decisions were regulated by Satb1. Satb1 expression was reduced in aged HSCs with compromised lymphopoietic potential, but forced Satb1 expression partly restored that potential. Thus, Satb1 governs the initiating process central to the replenishing of lymphoid lineages. Such activity in lymphoid cell generation may be of clinical importance and useful to overcome immunosenescence

    Moving the Field of B Lymphopoiesis

    No full text

    The Importance of Environment in the Production of Lymphocytes and Immunologists

    No full text

    A Developing Story

    No full text

    The Divergence of Lymphocyte Development Pathways

    No full text
    • …
    corecore