3 research outputs found

    Structural and Functional Differences in Distantly Related Protein Superfamilies

    No full text
    <p>The three proteins shown above are all members of the Structural Classification of Proteins (SCOP) scorpion toxin–related superfamily. All retain the same basic fold, but have significantly divergent functions. They function as part of the innate immune arsenal in plants and insects, but form part of the offense in scorpions. Evolution has conserved the basic structure, but many residues within the sequences are not structurally superposable. Such positions, often in the loop regions, can be significant in determining function.</p

    Definitions of COMBREX functional status symbols and fractions of microbial genes in COMBREX in each status category.

    No full text
    <p>Experimentally characterized proteins are <i>green</i>. (Those in the <i>green</i> set that have been manually curated by the GSDB are also marked with a gold “G.”) Proteins with functional predictions but no experimental evidence are <i>blue</i>. Proteins with no available functional predictions are <i>black</i>.</p

    Schematic overview of the computational and experimental contributions of COMBREX and its users, and the interrelationships of these contributions.

    No full text
    <p>Data and results specific to COMBREX are shown in boxes. External data imported into COMBREX are also shown, with arrows indicating entry points into the cycle. Methodology employed by COMBREX and its users is shown in blue type, as it is used to generate data. Not shown are two critical contributions to COMBREX: genome and cluster data imported from NCBI RefSeq and ProtClustDB, respectively, and NIH funding, which enables the grants that COMBREX issues to experimental laboratories.</p
    corecore