36 research outputs found

    Lessons Learned for the National Children’s Study from the National Institute of Environmental Health Sciences/U.S. Environmental Protection Agency Centers for Children’s Environmental Health and Disease Prevention Research

    Get PDF
    This mini-monograph was developed to highlight the experiences of the National Institute of Environmental Health Sciences (NIEHS)/U.S. Environmental Protection Agency (EPA) Centers for Children’s Environmental Health and Disease Prevention Research, focusing particularly on several areas of interest for the National Children’s Study. These include general methodologic issues for conducting longitudinal birth cohort studies and community-based participatory research and for measuring air pollution exposures, pesticide exposures, asthma, and neuro-behavioral toxicity. Rather than a detailed description of the studies in each of the centers, this series of articles is intended to provide information on the practicalities of conducting such intensive studies and the lessons learned. This explication of lessons learned provides an outstanding opportunity for the planners of the National Children’s Study to draw on past experiences that provide information on what has and has not worked when studying diverse multiracial and multi-ethnic groups of children with unique urban and rural exposures. The Children’s Centers have addressed and overcome many hurdles in their efforts to understand the link between environmental exposures and health outcomes as well as interactions between exposures and a variety of social and cultural factors. Some of the major lessons learned include the critical importance of long-term studies for assessing the full range of developmental consequences of environmental exposures, recognition of the unique challenges presented at different life stages for both outcome and exposure measurement, and the importance of ethical issues that must be dealt with in a changing medical and legal environment. It is hoped that these articles will be of value to others who are embarking on studies of children’s environmental health

    Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation

    Get PDF
    Akey step in lipolytic activation of adipocytes is the translocation of hormone-sensitive lipase (HSL) from the cytosol to the surface of the lipid storage droplet. Adipocytes from perilipin-null animals have an elevated basal rate of lipolysis compared with adipocytes from wild-type mice, but fail to respond maximally to lipolytic stimuli. This defect is downstream of the β-adrenergic receptor–adenylyl cyclase complex. Now, we show that HSL is basally associated with lipid droplet surfaces at a low level in perilipin nulls, but that stimulated translocation from the cytosol to lipid droplets is absent in adipocytes derived from embryonic fibroblasts of perilipin-null mice. We have also reconstructed the HSL translocation reaction in the nonadipocyte Chinese hamster ovary cell line by introduction of GFP-tagged HSL with and without perilipin A. On activation of protein kinase A, HSL-GFP translocates to lipid droplets only in cells that express fully phosphorylatable perilipin A, confirming that perilipin is required to elicit the HSL translocation reaction. Moreover, in Chinese hamster ovary cells that express both HSL and perilipin A, these two proteins cooperate to produce a more rapidly accelerated lipolysis than do cells that express either of these proteins alone, indicating that lipolysis is a concerted reaction mediated by both protein kinase A–phosphorylated HSL and perilipin A

    Broadly reactive antibodies specific for Plasmodium falciparum MSP-119 are associated with the protection of naturally exposed children against infection

    Get PDF
    BACKGROUND: The 19 kDa C-terminal region of Plasmodium falciparum Merozoite Surface Protein-1 is a known target of naturally acquired humoral immunity and a malaria vaccine candidate. MSP- 119 has four predominant haplotypes resulting in amino acid changes labelled EKNG, QKNG, QTSR and ETSR. IgG antibodies directed against all four variants have been detected, but it is not known if these variant specific antibodies are associated with haplotype-specific protection from infection. METHODS: Blood samples from 201 healthy Kenyan adults and children who participated in a 12-week treatment time-to-infection study were evaluated. Venous blood drawn at baseline (week 0) was examined for functional and serologic antibodies to MSP-119 and MSP-142 variants. MSP-119 haplotypes were detected by a multiplex PCR assay at baseline and weekly throughout the study. Generalized linear models controlling for age, baseline MSP-119 haplotype and parasite density were used to determine the relationship between infecting P. falciparum MSP-119 haplotype and variant-specific antibodies. RESULTS: A total of 964 infections resulting in 1,533 MSP-119 haplotypes detected were examined. The most common haplotypes were EKNG and QKNG, followed by ETSR and QTSR. Children had higher parasite densities, greater complexity of infection (\u3e1 haplotype), and more frequent changes in haplotypes over time compared to adults. Infecting MSP-119 haplotype at baseline (week 0) had no influence on haplotypes detected over the subsequent 11 weeks among children or adults. Children but not adults with MSP-119 and some MSP-142 variant antibodies detected by serology at baseline had delayed time-to-infection. There was no significant association of variant-specific serology or functional antibodies at baseline with infecting haplotype at baseline or during 11 weeks of follow up among children or adults. CONCLUSIONS: Variant transcending IgG antibodies to MSP-119 are associated with protection from infection in children, but not adults. These data suggest that inclusion of more than one MSP-119 variant may not be required in a malaria blood stage vaccine

    A Gα-dependent pathway that antagonizes multiple chemoattractant responses that regulate directional cell movement

    No full text
    Chemotactic cells, including neutrophils and Dictyostelium discoideum, orient and move directionally in very shallow chemical gradients. As cells polarize, distinct structural and signaling components become spatially constrained to the leading edge or rear of the cell. It has been suggested that complex feedback loops that function downstream of receptor signaling integrate activating and inhibiting pathways to establish cell polarity within such gradients. Much effort has focused on defining activating pathways, whereas inhibitory networks have remained largely unexplored. We have identified a novel signaling function in Dictyostelium involving a Gα subunit (Gα9) that antagonizes broad chemotactic response. Mechanistically, Gα9 functions rapidly following receptor stimulation to negatively regulate PI3K/PTEN, adenylyl cyclase, and guanylyl cyclase pathways. The coordinated activation of these pathways is required to establish the asymmetric mobilization of actin and myosin that typifies polarity and ultimately directs chemotaxis. Most dramatically, cells lacking Gα9 have extended PI(3,4,5)P(3), cAMP, and cGMP responses and are hyperpolarized. In contrast, cells expressing constitutively activated Gα9 exhibit a reciprocal phenotype. Their second message pathways are attenuated, and they have lost the ability to suppress lateral pseudopod formation. Potentially, functionally similar Gα-mediated inhibitory signaling may exist in other eukaryotic cells to regulate chemoattractant response
    corecore