33 research outputs found

    Evaluation of both perfusion and atrophy in multiple system atrophy of the cerebellar type using brain SPECT alone

    Get PDF
    BACKGROUND: Partial volume effects in atrophied areas should be taken into account when interpreting brain perfusion single photon emission computed tomography (SPECT) images of neurodegenerative diseases. To evaluate both perfusion and atrophy using brain SPECT alone, we developed a new technique applying tensor-based morphometry (TBM) to SPECT. METHODS: After linear spatial normalization of brain perfusion SPECT using (99m)Tc-ethyl cysteinate dimer ((99m)Tc-ECD) to a Talairach space, high-dimension-warping was done using an original (99m)Tc-ECD template. Contraction map images calculated from Jacobian determinants and spatially normalized SPECT images using this high-dimension-warping were compared using statistical parametric mapping (SPM2) between two groups of 16 multiple system atrophy of the cerebellar type (MSA-C) patients and 73 age-matched normal controls. This comparison was also performed in conventionally warped SPECT images. RESULTS: SPM2 demonstrated statistically significant contraction indicating local atrophy and decreased perfusion in the whole cerebellum and pons of MSA-C patients as compared to normal controls. Higher significance for decreased perfusion in these areas was obtained in high-dimension-warping than in conventional warping, possibly due to sufficient spatial normalization to a (99m)Tc-ECD template in high-dimensional warping of severely atrophied cerebellum and pons. In the present high-dimension-warping, modification of tracer activity remained within 3% of the original tracer distribution. CONCLUSIONS: The present new technique applying TBM to brain SPECT provides information on both perfusion and atrophy at the same time thereby enhancing the role of brain perfusion SPEC

    Differential Diagnosis Tool for Parkinsonian Syndrome Using Multiple Structural Brain Measures

    Get PDF
    Clinical differentiation of parkinsonian syndromes such as the Parkinson variant of multiple system atrophy (MSA-P) and cerebellar subtype (MSA-C) from Parkinson's disease is difficult in the early stage of the disease. To identify the correlative pattern of brain changes for differentiating parkinsonian syndromes, we applied discriminant analysis techniques by magnetic resonance imaging (MRI). T1-weighted volume data and diffusion tensor images were obtained by MRI in eighteen patients with MSA-C, 12 patients with MSA-P, 21 patients with Parkinson’s disease, and 21 healthy controls. They were evaluated using voxel-based morphometry and tract-based spatial statistics, respectively. Discriminant functions derived by step wise methods resulted in correct classification rates of 0.89. When differentiating these diseases with the use of three independent variables together, the correct classification rate was the same as that obtained with step wise methods. These findings support the view that each parkinsonian syndrome has structural deviations in multiple brain areas and that a combination of structural brain measures can help to distinguish parkinsonian syndromes

    In vivo evaluation of gray and white matter volume loss in the parkinsonian variant of multiple system atrophy using SPM8 plus DARTEL for VBM

    Get PDF
    AbstractIn multiple system atrophy with predominant parkinsonism (MSA-P), several voxel-based morphometry (VBM) studies have revealed gray matter loss; however, the white matter volume changes have been rarely reported. We investigated the volume changes of white matter as well as gray matter by VBM. A retrospective MRI study was performed in 20 patients with MSA-P and 30 age-matched healthy controls. We applied VBM with statistical parametric mapping (SPM8) plus diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) to explore the regional atrophy of gray and white matter in all of the MSA-P patients, 14 patients with left-side dominant and 6 patients with right-side dominant onset as compared to controls. In all of the MSA-P patients, VBM revealed a significant volume reduction of gray matter in the bilateral putamina, cerebellums and dorsal midbrain. White matter loss was located in bilateral globus pallidi, external capsules extending to the midbrain, right subcortical to precentral area through internal capsule, the pons, bilateral middle cerebellar peduncles and left cerebellum. In left-side dominant MSA-P patients, the gray and white matter volume loss was detected predominantly on the right side and vice versa in right-side dominant MSA-P patients. A correlation with disease duration and severity was not detected. VBM using SPM8 plus DARTEL detected significant volume loss not only in the gray but also in the white matter of the area affected by MSA-P

    lnitial Human PET Studies of Metabotropic Glutamate Receptor Type 1 Ligand 11C-lTMM

    No full text
    N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-4-11C-methoxy-N-methylbenzamide (11C-ITMM) is a potential radioligand for mapping metabotropic glutamate receptor type 1 (mGluR1) in the brain by PET. The present study was performed to determine the safety, distribution, radiation dosimetry, and initial brain imaging of 11C-ITMM in healthy human subjects. Methods: The multiorgan biodistribution and radiation dosimetry of 11C-ITMM were assessed in 3 healthy human subjects, who underwent 2-h whole-body PET scans. Radiation dosimetry was estimated from the normalized number of disintegrations of source organs using the OLINDA/EXM program. Five healthy human subjects underwent 90-min dynamic 11C-ITMM scans of brain regions with arterial blood sampling. For anatomic coregistration, T1-weighted MR imaging was performed. Metabolites in plasma and urine samples were analyzed by high-performance liquid chromatography. 11C-ITMM uptake was assessed quantitatively using a 2-tissue-compartment model. Results: There were no serious adverse events in any of the subjects throughout the study period. 11C-ITMM PET demonstrated high uptake in the urinary bladder and gallbladder, indicating both urinary and fecal excretion of radioactivity. The absorbed dose (muGy/MBq) was highest in the urinary bladder wall (13.2+/-3.5), small intestine (9.8+/-1.7), and liver (9.1+/-2.0). The estimated effective dose for 11C-ITMM was 4.6+/-0.3muSv/MBq. 11C-ITMM showed a gradual increase of radioactivity in the cerebellar cortex. The total distribution volume in the brain regions ranged from 2.61+/-0.30 (cerebellar cortex) to 0.52+/-0.17 (pons), and the rank order of the corresponding total distribution volume of 11C-ITMM was cerebellar cortex > thalamus > frontal cortex > striatum ≈ pons, which was consistent with the known distribution of mGluR1 in the primate brain. The rate of 11C-ITMM metabolism in plasma was moderate: at 60 min after injection, 62.2%+/-8.2% of the radioactivity in plasma was intact parent compound. Conclusion: The initial findings of the present study indicated that 11C-ITMM PET is feasible for imaging of mGluR1 in the brain. The low effective dose will permit serial examinations in the same subjects
    corecore