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Clinical differentiation of parkinsonian syndromes such as the Parkinson variant ofmultiple system atrophy (MSA-P) and cerebellar
subtype (MSA-C) from Parkinson’s disease is difficult in the early stage of the disease. To identify the correlative pattern of brain
changes for differentiating parkinsonian syndromes, we applied discriminant analysis techniques by magnetic resonance imaging
(MRI). T1-weighted volume data and diffusion tensor images were obtained by MRI in eighteen patients with MSA-C, 12 patients
withMSA-P, 21 patients with Parkinson’s disease, and 21 healthy controls.They were evaluated using voxel-basedmorphometry and
tract-based spatial statistics, respectively. Discriminant functions derived by step wise methods resulted in correct classification
rates of 0.89. When differentiating these diseases with the use of three independent variables together, the correct classification
rate was the same as that obtained with step wise methods. These findings support the view that each parkinsonian syndrome
has structural deviations in multiple brain areas and that a combination of structural brain measures can help to distinguish
parkinsonian syndromes.

1. Introduction

Multiple system atrophy (MSA) is an adult-onset, sporadic,
progressive neurodegenerative disease characterized by vary-
ing severity of parkinsonian features, and cerebellar ataxia,
autonomic failure, and corticospinal disorders [1–4]. Accord-
ing to the clinical presentation, a parkinsonian type (MSA-P)
and a cerebellar type of MSA (MSA-C) are distinguished [2].
Parkinson’s disease (PD) is a progressive neurodegenerative
movement disorder characterized by rigidity, tremor, and
bradykinesia. Its prevalence increases with age, and it affects
1% of the population over age 65 [5].

PD and MSA are both alpha-synucleinopathies [6, 7].
Pathologically, in Parkinson’s disease a massive loss of dop-
aminergic neurons in pars compacta of substantia nigra and
intraneuronal Lewy bodies are present [8]. InMSA, neuronal

loss and gliosis occur in the inferior olives, pons, transverse
pontocerebellar fibers, cerebellum, substantia nigra, locus
caeruleus, striatum, and the intermediolateral column of the
spinal cord [9]. In MSA-P, the nigrostriatal system is the
main site of pathology, but less severe degeneration can be
widespread and usually includes the olivopontocerebellar
system [9, 10]. In MSA-C, the olivopontocerebellar system
is mainly affected along with loss of pontine neurons and
transverse pontocerebellar fibres and atrophy of the middle
cerebellar peduncles (MCPs) [9, 10]. Conventional magnetic
resonance imaging (MRI) may also help distinguish the
two forms of MSA. MSA-P shows “slit-like” marginal hype-
rintensity of the putamen [11]. Additionally, the “hot-cross
bun” sign on T2-weighted and proton density images in
the ventral pons has been reported to be related to MSA-C
[12]. However, these MRI changes do not always occur
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[3]. Clinical differential diagnosis between PD and MSA
is difficult in the early stage of the disease. Relevant works
on the other tools like SPECT [13], transcranial brain
sonography [14–16] and on optical coherence tomography
[17] showed the effectiveness for differentiating PD from
healthy volunteer. Additionally, combined use of 123I-(S)-2-
hydroxy-3-iodo-6-methoxy-N-((1-ethyl-2-pyrrodinyl)-met-
hyl) benzamide (IBZM), 123I-N-v-fluoropropyl-2b-carbo-
methoxy-3b-(4-iodophenyl)nortropan (FP-CIT), and meta-
123I-iodobenzylguanidine (MIBG) distinguishes Parkinsons
disease from atypical parkinsonian disorder, such as PSP
and MSA with the accuracy of about 90% [18]. However,
3 SPECT/scintigraphy tests only for diagnosis are not
practical.

Over the last few years, a number of MRI studies have
focused on the identification of diagnostic markers helpful in
the differential diagnosis of parkinsonian syndromes such as
MSA, PD, and progressive supranuclear palsy (PSP) [19–22].
However, no studies have discriminated among PD, MSA-P,
MSA-C, and healthy subjects simultaneously. In the present
study, we hypothesized that we would be able to distinguish
the PD and healthy subjects from the MSA subjects by
using the infratentorial brain images and MSA-P and PD
from theMSA-C and healthy subjects by using supratentorial
images. The characteristic distribution of regional brain
changes revealed by the gray matter volume data using
the optimized, voxel-based morphometry (VBM) method
and by the diffusion tensor imaging data using tract-based
spatial statistics (TBSS) would have diagnostic values for
discriminating such diseases.

2. Materials and Methods

2.1. Subjects. From November 2006 to November 2010, 200
consecutive patients whose chief complaints were parkinson-
ism underwent brainMRI at our institution.We excluded the
patients with cerebrovascular diseases cortical infarctions,
multiple lacunar lesions, leukoaraiosis, and other lesions
above Fazekas’s Grade 2 on T2-weighted images or fluid-
attenuated inversion recovery (FLAIR) MRI [23], PSP, and
corticobasal degeneration (CBD). Clinical diagnosis of PD
and MSA was made according to the established consensus
criteria [2, 24]. A probable clinical diagnosis was determined
by two neurologist with more than 20 years of experience
in the diagnosis of movement disorders (MO, MM). As a
consequence, 18 consecutive patients withMSA-C, 12 patients
with MSA-P, and 21 patients with PD were studied. Their
characteristics are shown in Table 1. 24 out of 30 MSA
patients were hospitalized for the detailed diagnosis, and
the diagnosis of 30 MSA patients weas not changed during
follow-up clinical assessments (mean period = 2.2 years). As
for PD, the follow-up clinical assessments were conducted
(mean period = 4.7 years) after the MRI imaging, and no
additional pathology was detected. 21 age- and sex-matched
healthy persons who demonstrated no current or past history
of psychiatric illness or contact with psychiatric services were
enrolled as controls. Participants were excluded if they had
a prior medical history of central nervous system disease or
severe head injury. The study protocol was approved by the

Table 1: Characteristics of the participants.

MSA-C MSA-P PD Normal
volunteers

Mean age (years) 63.6 ± 7.8 61.9 ± 7.7 62.2 ± 7.0 62.3 ± 5.6
Sex (male : female) 7 : 11 6 : 6 10 : 11 11 : 10
Duration of illness
(year) 3.9 ± 2.5 3.3 ± 2.6 6.8 ± 4.1

MSA-C: cerebellar form of multiple system atrophy; MSA-P: parkinsonism
forms of multiple system atrophy; PD: Parkinson’s disease.

ethics committee of the National Center of Neurology and
Psychiatry, Japan.

2.2. MRI Data Acquisition and Processing. MR studies were
performed on a Magnetom Symphony 1.5 Tesla (Siemens,
Erlangen, Germany). First, high-spatial-resolution, 3-dim-
ensional (3D) T1-weighted images of the brain were obtained
for morphometric study. The 3D T1-weighted images were
scanned in the sagittal plane (TE/TR: 2.64/1580ms; flip angle:
15∘; effective slice thickness: 1.23mm; slab thickness: 177mm;
matrix: 208 × 256; FOV: 256 × 315mm2; acquisitions: 1)
yielding 144 contiguous slices through the head. The raw 3D
T1-weighted volume data were transferred to a workstation,
and structural images were analyzed using an optimized
VBM technique. Data were analyzed using Statistical Para-
metricMapping 5 (SPM5) software (WelcomeDepartment of
Imaging Neuroscience, London, UK) running on MATLAB
7.0 (Math Works, Natick, MA). Images were processed using
an optimized VBM script. The details of this process are
described elsewhere [25]. First, each individual 3D-T1 image
was normalized with the optimized VBM method. Normal-
ized segmented images were modulated by multiplication
with Jacobian determinants of the spatial normalization
function to encode the deformation field for each subject, as
tissue density changes in normal space. Gray matter volume
and cerebrospinal fluid (CSF) volume images were smoothed
using a 12mm full width at half maximum of an isotropic
Gaussian kernel. Diffusion tensor imaging (DTI) was then
performed in the axial plane (TE/TR: 106/11,200ms; FOV:
240 × 240mm2; matrix: 96 × 96; 75 continuous transverse
slices; slice thickness 2.5mm with no interslice gap). Dif-
fusion was measured along 64 noncollinear directions with
the use of a diffusion-weighted factor 𝑏 in each direction
for 1000 s/mm2, and one image was acquired without use of
a diffusion gradient. Recently, a novel processing technique
has been published. In this technique, instead of trying to
match each and every voxel in different subjects, DTI data
is projected on a common pseudoanatomical skeleton and
therefore does not need smoothing [26]. TBSS is available as
part of the FSL 4.1 software package [27].TheTBSS script runs
the nonlinear registration, aligning all fractional anisotropy
(FA) images to the FMRIB58 FA template, which is supplied
with FSL. The script then takes the target and affine-aligns it
into a 1 × 1 × 1mm MNI152 space. Once this is done, each
subject’s FA image has the nonlinear transform to the target
and then the affine transform to the MNI152 space applied,
resulting in a transformation of the original FA image into
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the MNI152 space. Next, TBSS creates the mean of all aligned
FA images and applies thinning of the local tract structure
to create a skeletonized mean FA image. In order to exclude
areas of low FA and/or high intersubject variability from the
statistical analysis, TBSS thresholds a mean FA skeleton with
a certain FA value, typically 0.2.The resulting binary skeleton
mask is a pseudoanatomical representation of the main fiber
tracks and defines the set of voxels used in all subsequent
processing. Finally, TBSS projects each subject’s aligned FA
image onto the skeleton. This results in skeletonized FA data.
It is this file that feeds into the voxelwise statistics. In addition
to DTI and 3D T1-weighted images, conventional axial T2-
weighted images (TE/TR: 95/3500ms; flip angle: 150∘; slice
thickness: 5mm; intersection gap: 1.75mm; matrix: 448 ×
512; field of view (FOV): 210 × 240mm2; acquisitions: 1)
and fluid attenuation inversion recovery images in the axial
plane (TE/TR: 101/8800ms; flip angle: 150∘; slice thickness:
3mm; intersection gap: 1.75mm; matrix: 448 × 512; FOV:
210 × 240mm2; acquisition: 1) were acquired to exclude
cerebrovascular disease or other diseases such as tumors, and
hydrocephalus. On conventional MRI, no abnormal findings
were detected in the brain of any subject.

2.3. Statistical Analysis. We first evaluated the differences
between the patients and healthy subjects using analysis of
variance (ANOVA). These tests were performed with the
SPSS software ver. 11 (SPSS Japan, Tokyo, Japan). There were
no significant differences in age among patients and controls,
but there were statistically significant differences in duration
of illness between the patients withMSA-P and with PD (𝑃 =
0.012) and with MSA-C and with PD (𝑃 = 0.005).

The discriminant function analyses were then conducted
to assess the ability of a combination of brain anatomi-
cal variables to distinguish between patients with MSA-C,
MSA-P, Parkinson’s disease, and controls. The independent
variables were the volume data and fractional anisotropy
value derived from the normalized individual image using
the region of interests (ROI) method. ROIs were put on
the “single subj T1.nii” image regarded as the anatomically
standard image in SPM5, in the fourth ventricle, cerebellum
hemisphere; these were derived from the WFU PickAtlas,
extension program of SPM5 [28, 29]. We also put ROIs on
the “FMRIB58 FA-skeleton 1mm.nii” image, which is the
anatomically standard image in FSL, in the MCP, superior
cerebellar peduncle (SCP), pons, substantia nigra, supe-
rior temporal white matter region, prefrontal white matter
regions, and primary motor region where previous studies
showed differences among the patients with MSA-C, MSA-
P, PD, and controls (Figure 1) [20, 22, 30–37]. The value of
a particular tissue was extracted using the software MarsBar
[38], an extension program of SPM5.

The Box’s 𝑀 test confirmed the inequality of the group
covariance matrices (Box-𝑀 = 76.63; 𝑃 < 0.001). Discrimi-
nant functions were derived by step wise methods based on
Mahalanobis’ distance. The step wise selection criteria were
decided by the overall multivariate 𝐹 value of each variable
to test differences between the patients and controls and to
maximize the discriminant function between the groups. At

Table 2:Mean fractional anisotropy value in each region of interests
and 4th ventricular and cerebellar volumes in patients with MSA-C,
MSA-P, PD, and controls.

MSA-C MSA-P PD Normal
4th Vent vol 0.31 ± 0.07 0.28 ± 0.07 0.19 ± 0.04 0.20 ± 0.04

Cerebellum vol 0.28 ± 0.04 0.30 ± 0.03 0.33 ± 0.04 0.34 ± 0.04
MCP 0.32 ± 0.05 0.37 ± 0.05 0.41 ± 0.03 0.39 ± 0.03

SCP 0.44 ± 0.02 0.43 ± 0.02 0.45 ± 0.04 0.47 ± 0.03

Pons 0.12 ± 0.01 0.13 ± 0.01 0.14 ± 0.01 0.13 ± 0.01

SN 0.53 ± 0.04 0.54 ± 0.01 0.54 ± 0.05 0.56 ± 0.04

ST 0.21 ± 0.01 0.13 ± 0.01 0.13 ± 0.01 0.21 ± 0.02

PF 0.05 ± 0.00 0.06 ± 0.01 0.06 ± 0.00 0.05 ± 0.01

PM 0.20 ± 0.02 0.21 ± 0.02 0.22 ± 0.02 0.21 ± 0.02

4th Vent vol: fourth ventricle volume; cerebellum vol: cerebellum volume;
MSA-C: cerebellar form of multiple system atrophy; MSA-P: parkinsonism
forms of multiple system atrophy; MCP: middle cerebellar peduncle; SCP:
superior cerebellar peduncle; PD: Parkinson’s disease; SN: substantia nigra;
ST: superior temporal region; PF: prefrontal region; PM: primary motor
region.

Table 3: The coefficients of discriminant analysis.

Factor 1 Factor 2 Factor 3

Stepwise method

4th Vent vol 1.74 19.47 3.33
SN 19.16 −9.81 38.32
ST −127.87 3.14 −32.07
PF 196.3 80.22 −188.97

(Constant) 0.66 −4.13 −5.99

Two independent
variables analysis

Pons −76.33 69.41 (—)
ST 97.92 13.01 (—)

(Constant) −6.98 11.27 (—)

Three independent
variables analysis

4th Vent vol 1.14 15.82 12.23
MCP −24.59 −5.39 23.04
ST 100.68 −13.21 6.19

(Constant) −4.01 −3.68 −13.58
4th Vent vol: fourth ventricle volume;MCP:middle cerebellar peduncle; SN:
substantia nigra; ST: superior temporal region; PM: primary motor region.

the same time, we entered the two or three independent
variables together and estimated the predictive power of the
discriminant function.

3. Results

We first calculated the volume and FA value from the
spatially normalized images using ROIs. The mean values of
these parameters are summarized in Table 2 and Figure 2.
The mean FA value of the prefrontal region was too small
to examine, so we did not evaluate the influence of the
FA value in the prefrontal white matter region. We then
conducted discriminant function analyses.The following five
variables were entered in a step wise manner: fourth ventricle
volume, substantia nigra, superior temporal, and prefrontal
white matter region. The discriminant coefficients are shown
in Table 3. The use of these variables resulted in correct
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Table 4: Classification results.

Predicted group membership
MSA-C MSA-P PD Control Total

Stepwise method (88.9% of original grouped cases correctly classified)

Original data

Count

MSA-C 15 0 0 3 18
MSA-P 0 9 3 0 12
PD 0 2 19 0 21

Control 0 0 0 21 21

%

MSA-C 83.3 0 0 16.7 100
MSA-P 0 75.0 25.0 0 100
PD 0 9.5 90.5 0 100

Control 0.0 0 0 100.0 100
Two independent variables (84.7% of original grouped cases correctly classified)

Original data

Count

MSA-C 15 0 0 3 18
MSA-P 0 10 2 0 12
PD 0 4 17 0 21

Control 1 1 0 19 21

%

MSA-C 83.3 0.0 0 16.7 100
MSA-P 0 83.3 16.7 0 100
PD 0 19.0 81.0 0 100

Control 4.8 4.8 0.0 90.5 100
Three independent variables (88.9% of original grouped cases correctly classified)

Original data

Count

MSA-C 14 0 0 4 18
MSA-P 0 10 2 0 12
PD 0 1 20 0 21

Control 0 1 0 20 21

%

MSA-C 77.8 0.0 0 22.2 100
MSA-P 0 83.3 16.7 0 100
PD 0 4.8 95.2 0 100

Control 0.0 4.8 0.0 95.2 100
MSA-C: cerebellar form of multiple system atrophy; MSA-P: parkinsonism forms of multiple system atrophy; PD: Parkinson’s disease.

classification rates of 0.89 (𝜒2 = 294.66; df = 12; 𝑃 < 0.001;
Wilks’ lambda = 0.012) (Table 4).

The correct classification rates of each combination used
to run the discriminant function analyses using two or three
independent variables together are listed in Table 5. The
highest correct classification rates were measured when we
estimated the FA value of the “pons and superior temporal
region” and “superior temporal region, MCP and fourth ven-
tricle volume”, respectively. Table 3 shows the discriminant
coefficients, and Table 4 shows the correct classification rates
derived from the analyses using two or three independent
variables together, in the same way. Figure 3 shows the
discriminant scores of each subject, calculated by the analysis
using three independent variables together.

4. Discussion

We found that the step wise discriminant function analysis
identifiedwith fairly good accuracy the combinations of ROIs
that characterized brain anatomical features distinguishing
the patients with MSA-C, MSA-P, PD, and healthy subjects,

and that when discriminate analysis was conducted using
the fourth ventricle volume and the FA value of MCP and
superior temporal region as independent variables together,
the correct classification rate was the same as that of step wise
discriminant function analysis.

One study showed that patients with MSA-C and MSA-
P share similar diffusion tensor imaging features in the
infratentorial region [22]. Furthermore, the combination of
DTImetrics can be used to distinguish between patients with
MSA and with PD. However, they could not differentiate the
patients with PD from healthy subjects. This may be because
they were focused on the infratentorial FA value and did not
investigate the focal lesions related to parkinsonism. In this
study, we used the FA value of the superior temporal regions,
known to be impaired inPDas an independent variable, sowe
could discriminate the patientswith PD fromhealthy subjects
and with MSA-C from those with MSA-P [30–32, 34, 35].

One study reported discriminating patients with MSA-
P, PD, PSP, and healthy subjects [20]. They indicated that
investigating the degeneration of the MCP is useful for
the in vivo differential diagnosis of MSA-P and PD. These
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Table 5: The correct classification rates of each combination of independent variables.

(a) Two independent variables

4th Vent vol Cerebellum vol MCP SCP Pons SN ST PM
4th Vent vol 0.514 0.583 0.611 0.583 0.556 0.819 0.431
Cerebellum vol 0.528 0.556 0.514 0.458 0.722 0.458
MCP 0.708 0.472 0.667 0.833 0.528
SCP 0.681 0.528 0.736 0.542
Pons 0.667 0.847 0.514
SN 0.722 0.583
ST 0.653
PM
4th Vent vol: fourth ventricle volume; cerebellum vol: cerebellum volume; MCP: middle cerebellar peduncle; SCP: superior cerebellar peduncle; SN:
substantia nigra; ST: superior temporal region; PM: primary motor region.

(b) Three independent variables

Accuracy
4th Vent vol Cerebellum vol MCP 0.556
4th Vent vol Cerebellum vol SCP 0.681
4th Vent vol Cerebellum vol Pons 0.569
4th Vent vol Cerebellum vol SN 0.583
4th Vent vol Cerebellum vol ST 0.861
4th Vent vol Cerebellum vol PM 0.583
4th Vent vol MCP SCP 0.708
4th Vent vol MCP Pons 0.542
4th Vent vol MCP SN 0.653
4th Vent vol MCP ST 0.889
4th Vent vol MCP PM 0.569
4th Vent vol SCP Pons 0.722
4th Vent vol SCP SN 0.625
4th Vent vol SCP ST 0.833
4th Vent vol SCP PM 0.681
4th Vent vol Pons SN 0.681
4th Vent vol Pons ST 0.889
4th Vent vol Pons PM 0.597
4th Vent vol SN ST 0.875
4th Vent vol SN PM 0.611
4th Vent vol ST PM 0.861

Cerebellum vol MCP SCP 0.681
Cerebellum vol MCP Pons 0.486
Cerebellum vol MCP SN 0.639
Cerebellum vol MCP ST 0.833
Cerebellum vol MCP PM 0.528
Cerebellum vol SCP Pons 0.625
Cerebellum vol SCP SN 0.583
Cerebellum vol SCP ST 0.764
Cerebellum vol SCP PM 0.583
Cerebellum vol Pons SN 0.653
Cerebellum vol Pons ST 0.833
Cerebellum vol Pons PM 0.528
Cerebellum vol SN ST 0.792
Cerebellum vol SN PM 0.583
Cerebellum vol ST PM 0.792
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(b) Continued.

Accuracy
MCP SCP Pons 0.681
MCP SCP SN 0.694
MCP SCP ST 0.819
MCP SCP PM 0.681
MCP Pons SN 0.694
MCP Pons ST 0.806
MCP Pons PM 0.486
MCP SN ST 0.833
MCP SN PM 0.625
MCP ST PM 0.819

SCP Pons SN 0.667
SCP Pons ST 0.819
SCP Pons PM 0.681
SCP SN ST 0.792
SCP SN PM 0.611
SCP ST PM 0.722

Pons SN ST 0.819
Pons SN PM 0.694
Pons ST PM 0.819

SN ST PM 0.764

(a) Middle cerebel-
lar peduncle

(b) Pons (c) Superior cere-
bellar peduncle

(d) Substantia
nigra

(e) Superior tempo-
ral region

(f) Prefrontal region (g) Primary motor
region

(h) 4th ventricle (i) Cerebellar hemisphere

Figure 1: Locations of regions of interest. From (a) to (g) were put on the “FMRIB58 FA-skeleton 1mm.nii” image, the anatomically standard
image in FSL. Background fractional anisotropy image was the “MNI152 T1 1mm.nii,” which was also the standard image in FSL. (h) and (i)
were put on a “single subj T1.nii” image regarded as the anatomically standard image in SPM5.
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0.25

0.35

0.45

MSA-C MSA-P PD HS

(a) Middle cerebellar ped-
uncle

0.4

0.5

0.45

MSA-C MSA-P PD HS

(b) Superior cerebellar
peduncle

0.1

0.15

0.2

MSA-C MSA-P PD HS

(c) Pons

0.5

0.55

0.6

MSA-C MSA-P PD HS

(d) Substantia nigra

0.12

0.17

0.22

MSA-C MSA-P PD HS

(e) Superior temporal reg-
ion

0.05

0.06

MSA-C MSA-P PD HS

(f) Prefrontal region

0.18

0.23

0.28

MSA-C MSA-P PD HS

(g) Primary motor region

0

0.2

0.4

MSA-C MSA-P PD HS

(h) 4th ventricle

0

0.2

0.4

MSA-C MSA-P PD HS

(i) Cerebellar hemisphere

Figure 2: A graphic presentation of mean fractional anisotropy values in each region and mean volumes of 4th ventricular and cerebellum.
MSA-C: multiple system atrophy with predominant cerebellar ataxia; MSA-P: multiple system atrophy with predominant parkinsonism; PD:
Parkinson’s disease; HS: healthy subjects.

results are congruent with our study. Establishing a means
of differentiation using MR imaging would have potential
therapeutic implications.

In this study, the participants with PD had a statistically
longer duration of illness than those with MSA. It is known
that MRI studies with PD show slight or no gray matter atro-
phy in early- to moderate-stage patients, whereas later-stage
patients exhibited marked cortical atrophy [31]. We used the
FA values for the independent variables to differentiate the
patients with PD from others. White matter which appears
normal on conventional MRI can show FA abnormalities,
possibly permitting an earlier identification of the disease
process which involves white matter tracts of the brain [33].
In addition, we successfully differentiated the patients with
MSA-P from those with MSA-C using the same parameter.

There is significant value to distinguishing these diseases
using DTI metrics.

All voxel-based analysis methods are susceptible to the
effects of the spatial normalization transformation that reg-
isters images of different individuals. Regions in which this
spatial transformation has relatively lower accuracy will tend
to display artificially higher variability, which will adversely
affect statistical significance. To date, TBSS is considered
more robust and better suited for whole brainDTI data analy-
sis. However, there are some limitations with the TBSS analy-
sis. First, “FMRIB58 FA-skeleton 1mm.nii” did not cover the
thalamus and striatum, both of which have significant rela-
tionships with parkinsonian features [39]. A previous study
demonstrated signal changes of the MR image after levodopa
administration in an anatomical cluster which included the
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Figure 3: 3-dimensional scattered plots showed the discriminant scores of each subject. These were calculated (a) by the analysis using step
wise method and (b) using three independent variables together. Factors 1–3 were defined in Table 3.

substantia nigra, tegmental ventral area subthalamic nucleus
bilaterally, the principal origin, and first relay nuclei of
projections in brain dopaminergic systems [40]. Therefore,
we do not recommend using dopamine-rich regions such as
the thalamus and striatum in discriminant function analysis
for parkinsonian syndrome. Second, the predominant motor
feature can change with time. The designation of MSA-P
and MSA-C refers to the predominant feature at the time
the patient is evaluated, and the predominant feature can
change with time [2]. All of our MSA-C samples did not
change the diagnosis to the MSA-P during follow-up clinical
assessments; however, the discriminant method in this study
would be fitted for the initial diagnosis. Third, our study is
a small cross-sectional study, and we did not validate this
discrimination method using another independent sample.
MSA-P andMSA-Cwithout cerebrovascular findings were so
scarce, and we did not gather sufficient sample size. Further
work with a large sample is required for the development
of better discriminant capability and, if feasible, with data
on another parkinsonism, PSP, would bring further clinical
advantage.

5. Conclusions

Discriminant functions derived by step wise methods
resulted in correct classification rates of 0.89. The present
methods for automated analysis ofmorphometric data largely
support findings from earlier studies using expert-guided
ROIs or automated procedures. These findings support the
view that each parkinsonian syndrome has structural devi-
ations in multiple brain areas, and discriminant function
analysis in this paper may provide objective biological infor-
mation adjunct to the clinical diagnosis of parkinsonian
syndromes.
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