8 research outputs found

    Receiver Integration with Arrayed Waveguide Gratings toward Multi-Wavelength Data-Centric Communications and Computing

    No full text
    This paper reviews receivers that feature low-loss multimode-output arrayed waveguide gratings (MM-AWGs) for wavelength division multiplexing (WDM) as well as hybrid integration techniques with high-speed throughput of up to 100 Gb/s and beyond. A design of optical coupling between higher-order multimode beams and a photodiode for a flat-top spectral shape is described in detail. The WDM photoreceivers were fabricated with different approaches. A 10-Gb/s photoreceiver was developed for a 1.25-Gb/s baud rate and assembled for eight-channel WDM by mechanical alignment. A receiver with 40-Gb/s throughput was built by using visual alignment for a 10-Gb/s baud rate and four-channel WDM. A 100-Gb/s receiver assembled by active alignment with a four-channel by 25-Gb/s baud rate is the basis for beyond-100 Gb/s and future multi-wavelength integrated devices toward data-centric communications and computing

    Inverted p-down Design for High-Speed Photodetectors

    No full text
    We discuss the structural consideration of high-speed photodetectors used for optical communications, focusing on vertical illumination photodetectors suitable for device fabrication and optical coupling. We fabricate an avalanche photodiode that can handle 100-Gbit/s four-level pulse-amplitude modulation (50 Gbaud) signals, and pin photodiodes for 100-Gbaud operation; both are fabricated with our unique inverted p-side down (p-down) design
    corecore