6 research outputs found

    The complex variability of blazars: time-scales and periodicity analysis in S4 0954+65

    Get PDF
    Among active galactic nuclei, blazars show extreme variability properties. We here investigate the case of the BL Lac object S4 0954+65 with data acquired in 2019-2020 by the Transiting Exoplanet Survey Satellite (TESS) and by the Whole Earth Blazar Telescope (WEBT) Collaboration. The 2-min cadence optical light curves provided by TESS during three observing sectors of nearly 1 month each allow us to study the fast variability in great detail. We identify several characteristic short-term time-scales, ranging from a few hours to a few days. However, these are not persistent, as they differ in the various TESS sectors. The long-term photometric and polarimetric optical and radio monitoring undertaken by the WEBT brings significant additional information, revealing that (i) in the optical, long-term flux changes are almost achromatic, while the short-term ones are strongly chromatic; (ii) the radio flux variations at 37 GHz follow those in the optical with a delay of about 3 weeks; (iii) the range of variation of the polarization degree and angle is much larger in the optical than in the radio band, but the mean polarization angles are similar; (iv) the optical long-term variability is characterized by a quasi-periodicity of about 1 month. We explain the source behaviour in terms of a rotating inhomogeneous helical jet, whose pitch angle can change in time

    Investigation of the correlation patterns and the Compton dominance variability of Mrk 421 in 2017

    Get PDF
    Aims. We present a detailed characterisation and theoretical interpretation of the broadband emission of the paradigmatic TeV blazar Mrk 421, with a special focus on the multi-band flux correlations.Methods. The dataset has been collected through an extensive multi-wavelength campaign organised between 2016 December and 2017 June. The instruments involved are MAGIC, FACT, Fermi-LAT, Swift, GASP-WEBT, OVRO, Medicina, and Metsahovi. Additionally, four deep exposures (several hours long) with simultaneous MAGIC and NuSTAR observations allowed a precise measurement of the falling segments of the two spectral components.Results. The very-high-energy (VHE; E > 100 GeV) gamma rays and X-rays are positively correlated at zero time lag, but the strength and characteristics of the correlation change substantially across the various energy bands probed. The VHE versus X-ray fluxes follow different patterns, partly due to substantial changes in the Compton dominance for a few days without a simultaneous increase in the X-ray flux (i.e., orphan gamma-ray activity). Studying the broadband spectral energy distribution (SED) during the days including NuSTAR observations, we show that these changes can be explained within a one-zone leptonic model with a blob that increases its size over time. The peak frequency of the synchrotron bump varies by two orders of magnitude throughout the campaign. Our multi-band correlation study also hints at an anti-correlation between UV-optical and X-ray at a significance higher than 3 sigma. A VHE flare observed on MJD 57788 (2017 February 4) shows gamma-ray variability on multi-hour timescales, with a factor ten increase in the TeV flux but only a moderate increase in the keV flux. The related broadband SED is better described by a two-zone leptonic scenario rather than by a one-zone scenario. We find that the flare can be produced by the appearance of a compact second blob populated by high energetic electrons spanning a narrow range of Lorentz factors, from gamma(min)' = 2 x 10(4) to gamma(max)' = 6 x 10(5).</p

    Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009

    Get PDF
    Aims. We present an extensive study of the BL Lac object Mrk 501 based on a data set collected during the multi-instrument campaign spanning from 2009 March 15 to 2009 August 1, which includes, among other instruments, MAGIC, VERITAS, Whipple 10 m, and Fermi-LAT to cover the gamma-ray range from 0.1 GeV to 20 TeV; RXTE and Swift to cover wavelengths from UV to hard X-rays; and GASP-WEBT, which provides coverage of radio and optical wavelengths. Optical polarization measurements were provided for a fraction of the campaign by the Steward and St. Petersburg observatories. We evaluate the variability of the source and interband correlations, the gamma-ray flaring activity occurring in May 2009, and interpret the results within two synchrotron self-Compton (SSC) scenarios.Methods. The multiband variability observed during the full campaign is addressed in terms of the fractional variability, and the possible correlations are studied by calculating the discrete correlation function for each pair of energy bands where the significance was evaluated with dedicated Monte Carlo simulations. The space of SSC model parameters is probed following a dedicated grid-scan strategy, allowing for a wide range of models to be tested and offering a study of the degeneracy of model-to-data agreement in the individual model parameters, hence providing a less biased interpretation than the "single-curve SSC model adjustment" typically reported in the literature.Results. We find an increase in the fractional variability with energy, while no significant interband correlations of flux changes are found on the basis of the acquired data set. The SSC model grid-scan shows that the flaring activity around May 22 cannot be modeled adequately with a one-zone SSC scenario (using an electron energy distribution with two breaks), while it can be suitably described within a two (independent) zone SSC scenario. Here, one zone is responsible for the quiescent emission from the averaged 4.5-month observing period, while the other one, which is spatially separated from the first, dominates the flaring emission occurring at X-rays and very-high-energy (> 100 GeV, VHE) gamma-rays. The flaring activity from May 1, which coincides with a rotation of the electric vector polarization angle (EVPA), cannot be satisfactorily reproduced by either a one-zone or a two-independent-zone SSC model, yet this is partially affected by the lack of strictly simultaneous observations and the presence of large flux changes on sub-hour timescales (detected at VHE gamma rays).Conclusions. The higher variability in the VHE emission and lack of correlation with the X-ray emission indicate that, at least during the 4.5-month observing campaign in 2009, the highest energy (and most variable) electrons that are responsible for the VHE gamma rays do not make a dominant contribution to the similar to 1 keV emission. Alternatively, there could be a very variable component contributing to the VHE gamma-ray emission in addition to that coming from the SSC scenario. The studies with our dedicated SSC grid-scan show that there is some degeneracy in both the one-zone and the two-zone SSC scenarios probed, with several combinations of model parameters yielding a similar model-to-data agreement, and some parameters better constrained than others. The observed gamma-ray flaring activity, with the EVPA rotation coincident with the first gamma-ray flare, resembles those reported previously for low frequency peaked blazars, hence suggesting that there are many similarities in the flaring mechanisms of blazars with different jet properties

    Multiwavelength behaviour of the blazar 3C 279: decade-long study from gamma-ray to radio

    No full text
    We report the results of decade-long (2008-2018) gamma-ray to 1 GHz radio monitoring of the blazar 3C 279, including GASP/WEBT, Fermi and Swift data, as well as polarimetric and spectroscopic data. The X-ray and gamma-ray light curves correlate well, with no delay greater than or similar to 3 h, implying general cospatiality of the emission regions. The gamma-ray optical flux flux relation changes with activity state, ranging from a linear to a more complex dependence. The behaviour of the Stokes parameters at optical and radio wavelengths, including 43 GHz Very Long Baseline Array images, supports either a predominantly helical magnetic field or motion of the radiating plasma along a spiral path. Apparent speeds of emission knots range from 10 to 37c, with the highest values requiring bulk Lorentz factors close to those needed to explain gamma-ray variability on very short time-scales, The Mg II emission line flux in the 'blue' and 'red' wings correlates with the optical synchrotron conlinuum flux density, possibly providing a variable source of seed photons for inverse Compton scattering. in the radio bands, we find progressive delays of the most prominent light-curve maxima with decreasing frequency, as expected from the frequency dependence of the tau = 1 surface of synchrotron self-absorption. The global maximum in the 86 GHz light. curve becomes less prominent at lower frequencies, while a local maximum, appearing in 2014, strengthens toward decreasing frequencies, becoming pronounced at similar to 5 GHz, These tendencies suggest. different Doppler boosting of stratified radio-emitting zones in the jet

    Investigating the multiwavelength behaviour of the flat spectrum radio quasar CTA 102 during 2013-2017

    No full text
    We present a multiwavelength study of the flat-spectrum radio quasar CTA 102 during 2013-2017. We use radio-to-optical data obtained by the Whole Earth Blazar Telescope, 15 GHz data from the Owens Valley Radio Observatory, 91 and 103 GHz data from the Atacama Large Millimeter Array, near-infrared data from the Rapid Eye Monitor telescope, as well as data from the Swift (optical-UV and X-rays) and Fermi (γ -rays) satellites to study flux and spectral variability and the correlation between flux changes at different wavelengths. Unprecedented γ -ray flaring activity was observed during 2016 November-2017 February, with four major outbursts. A peak flux of (2158 ± 63) × 10−8 ph cm−2 s−1, corresponding to a luminosity of (2.2 ± 0.1) × 1050 erg s−1, was reached on 2016 December 28. These four γ -ray outbursts have corresponding events in the near-infrared, optical, and UV bands, with the peaks observed at the same time. A general agreement between X-ray and γ -ray activity is found. The γ -ray flux variations show a general, strong correlation with the optical ones with no time lag between the two bands and a comparable variability amplitude. This γ -ray/optical relationship is in agreement with the geometrical model that has successfully explained the low-energy flux and spectral behaviour, suggesting that the long-term flux variations are mainly due to changes in the Doppler factor produced by variations of the viewing angle of the emitting regions. The difference in behaviour between radio and higher energy emission would be ascribed to different viewing angles of the jet regions producing their emission. © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical SocietyThe data collected by the WEBT collaboration are stored in the WEBT archive at the Osservatorio Astrofisico di Torino INAF (http://www.oato.inaf.it/blazars/webt/); for questions regarding their availability, contact the WEBT President Massimo Villata([email protected]).We acknowledge financial contribution from the agreementASI-INAFn. 2017-14-H.0 and from the contract PRIN-SKA-CTA-INAF 2016. This research was partially supported by the Bulgarian National Science Fund of the Ministry of Education and Science under grants DN 08-1/2016, DN 18-13/2017, and KP-06-H28/3 (2018). The Skinakas Observatory is a collaborative project of the University of Crete, the Foundation for Research and Technology -Hellas, and the Max-Planck-Institut fur Extraterrestrische Physik. The Abastumani team acknowledges financial support by the Shota Rustaveli National Science Foundation under contract FR/217554/16. The St. Petersburg University team acknowledges support from Russian Science Foundation grant 17-12-01029. GD and OV gratefully acknowledge the observing grant support from the Institute of Astronomy and Rozhen National Astronomical Observatory, Bulgarian Academy of Sciences, via bilateral joint research project 'Study of ICRF radio-sources and fast variable astronomical objects' (head -G.Damljanovic). This work is a part of the Projects No. 176011 ('Dynamics and Kinematics of Celestial Bodies and Systems'), No. 176004 ('Stellar Physics'), and No. 176021 ('Visible and Invisible Matter in Nearby Galaxies: Theory and Observations') supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia. JE is indebted to DGAPA (Universidad Nacional Autonoma de M ' exico) for financial support, PAPIIT project IN114917. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. Data from the Steward Observatory blazar monitoring project were used. This program is supported by NASA/Fermi Guest Investigator grants NNX12AO93G and NNX15AU81G. We acknowledge support by Bulgarian National Science Programme 'Young Scientists and Postdoctoral Students 2019', Bulgarian National Science Fund under grant DN18-10/2017 and National RI Roadmap Projects DO1-157/28.08.2018 and DO1-153/28.08.2018 of the Ministry of Education and Science of the Republic of Bulgaria. This publication makes use of data obtained at Mets ahovi Radio Observatory, operated by Aalto University in Finland. The Astronomical Observatory of the Autonomous Region of theAostaValley (OAVdA) is managed by the Fondazione Clment Fillietroz-ONLUS, which is supported by the Regional Government of the Aosta Valley, the TownMunicipality of Nus and the 'Unit des Communes valdtaines Mont-milius'. The research at the OAVdA was partially funded by two 'Research and Education' grants from Fondazione CRT. RR acknowledges support from CONICYT project Basal AFB-170002. MM and TM acknowledge support through the Russian Government Program of Competitive Growth of Kazan Federal University. The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. This work performed in part under DOE Contract DE-AC02-76SF00515. The OVRO 40-m monitoring program is supported in part by NASA grants NNX08AW31G, NNX11A043G, and NNX14AQ89G, and NSF grants AST-0808050 and AST-1109911. We thank the Swift team for making these observations possible, the duty scientists, and science planners. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. FD thanks S. Covino for his help with the REM data reduction. This research has made use of data obtained from the high-energy Astrophysics Science Archive Research Center (HEASARC) provided by NASA's Goddard Space Flight Center

    ERRATUM: MULTI-WAVELENGTH OBSERVATIONS OF THE FLARING GAMMA-RAY BLAZAR 3C 66A IN 2008 OCTOBER (vol 726, pg 43, 2011)

    No full text
    This is an Erratum for the article 2011 ApJ 726 4
    corecore