699 research outputs found

    Robust non-Abelian spin liquid and possible intermediate phase in antiferromagnetic Kitaev model with magnetic field

    Get PDF
    We investigate the non-Abelian topological chiral spin liquid phase in the two-dimensional (2D) Kitaev honeycomb model subject to a magnetic field. By combining density matrix renormalization group (DMRG) and exact diagonalization (ED) we study the energy spectra, entanglement, topological degeneracy, and expectation values of Wilson loop operators, allowing for robust characterization. While the ferromagnetic (FM) Kitaev spin liquid is already destroyed by a weak magnetic field with Zeeman energy H∗FM≈0.02H_*^\text{FM} \approx 0.02, the antiferromagnetic (AFM) spin liquid remains robust up to a magnetic field that is an order of magnitude larger, H∗AFM≈0.2H_*^\text{AFM} \approx 0.2. Interestingly, for larger fields H∗AFM<H<H∗∗AFMH_*^\text{AFM} < H < H_{**}^\text{AFM}, an intermediate gapless phase is observed, before a second transition to the high-field partially-polarized paramagnet. We attribute this rich phase diagram, and the remarkable stability of the chiral topological phase in the AFM Kitaev model, to the interplay of strong spin-orbit coupling and frustration enhanced by the magnetic field. Our findings suggest relevance to recent experiments on RuCl3_3 under magnetic fields.Comment: 8 pages, 8 figure

    Quark Masses: An Environmental Impact Statement

    Full text link
    We investigate worlds that lie on a slice through the parameter space of the Standard Model over which quark masses vary. We allow as many as three quarks to participate in nuclei, while fixing the mass of the electron and the average mass of the lightest baryon flavor multiplet. We classify as "congenial" worlds that satisfy the environmental constraint that the quark masses allow for stable nuclei with charges one, six, and eight, making organic chemistry possible. Whether a congenial world actually produces observers depends on a multitude of historical contingencies, beginning with primordial nucleosynthesis, which we do not explore. Such constraints may be independently superimposed on our results. Environmental constraints such as the ones we study may be combined with information about the a priori distribution of quark masses over the landscape of possible universes to determine whether the measured values of the quark masses are determined environmentally, but our analysis is independent of such an anthropic approach. We estimate baryon masses as functions of quark masses and nuclear masses as functions of baryon masses. We check for the stability of nuclei against fission, strong particle emission, and weak nucleon emission. For two light quarks with charges 2/3 and -1/3, we find a band of congeniality roughly 29 MeV wide in their mass difference. We also find another, less robust region of congeniality with one light, charge -1/3 quark, and two heavier, approximately degenerate charge -1/3 and 2/3 quarks. No other assignment of light quark charges yields congenial worlds with two baryons participating in nuclei. We identify and discuss the region in quark-mass space where nuclei would be made from three or more baryon species.Comment: 40 pages, 16 figures (in color), 4 tables. See paper for a more detailed abstract. v4: Cleaning up minor typo

    Exact Chiral Spin Liquids and Mean-Field Perturbations of Gamma Matrix Models on the Ruby Lattice

    Full text link
    We theoretically study an exactly solvable Gamma matrix generalization of the Kitaev spin model on the ruby lattice, which is a honeycomb lattice with "expanded" vertices and links. We find this model displays an exceptionally rich phase diagram that includes: (i) gapless phases with stable spin fermi surfaces, (ii) gapless phases with low-energy Dirac cones and quadratic band touching points, and (iii) gapped phases with finite Chern numbers possessing the values {\pm}4,{\pm}3,{\pm}2 and {\pm}1. The model is then generalized to include Ising-like interactions that break the exact solvability of the model in a controlled manner. When these terms are dominant, they lead to a trivial Ising ordered phase which is shown to be adiabatically connected to a large coupling limit of the exactly solvable phase. In the limit when these interactions are weak, we treat them within mean-field theory and present the resulting phase diagrams. We discuss the nature of the transitions between various phases. Our results highlight the richness of possible ground states in closely related magnetic systems.Comment: 9 pages, 9 figure

    A new spin-anisotropic harmonic honeycomb iridate

    Full text link
    The physics of Mott insulators underlies diverse phenomena ranging from high temperature superconductivity to exotic magnetism. Although both the electron spin and the structure of the local orbitals play a key role in this physics, in most systems these are connected only indirectly --- via the Pauli exclusion principle and the Coulomb interaction. Iridium-based oxides (iridates) open a further dimension to this problem by introducing strong spin-orbit interactions, such that the Mott physics has a strong orbital character. In the layered honeycomb iridates this is thought to generate highly spin-anisotropic interactions, coupling the spin orientation to a given spatial direction of exchange and leading to strongly frustrated magnetism. The potential for new physics emerging from such interactions has driven much scientific excitement, most recently in the search for a new quantum spin liquid, first discussed by Kitaev \cite{kitaev_anyons_2006}. Here we report a new iridate structure that has the same local connectivity as the layered honeycomb, but in a three-dimensional framework. The temperature dependence of the magnetic susceptibility exhibits a striking reordering of the magnetic anisotropy, giving evidence for highly spin-anisotropic exchange interactions. Furthermore, the basic structural units of this material suggest the possibility of a new family of structures, the `harmonic honeycomb' iridates. This compound thus provides a unique and exciting glimpse into the physics of a new class of strongly spin-orbit coupled Mott insulators.Comment: 12 pages including bibliography, 5 figure

    Z2_2 topology and superconductivity from symmetry lowering of a 3D Dirac Metal Au2_2Pb

    Full text link
    3D Dirac semi-metals (DSMs) are materials that have massless Dirac electrons and exhibit exotic physical properties It has been suggested that structurally distorting a DSM can create a Topological Insulator (TI), but this has not yet been experimentally verified. Furthermore, quasiparticle excitations known as Majorana Fermions have been theoretically proposed to exist in materials that exhibit superconductivity and topological surface states. Here we show that the cubic Laves phase Au2_2Pb has a bulk Dirac cone above 100 K that gaps out upon cooling at a structural phase transition to create a topologically non trivial phase that superconducts below 1.2 K. The nontrivial Z2_2 = -1 invariant in the low temperature phase indicates that Au2_2Pb in its superconducting state must have topological surface states. These characteristics make Au2_2Pb a unique platform for studying the transition between bulk Dirac electrons and topological surface states as well as studying the interaction of superconductivity with topological surface states

    Non-coplanar and counter-rotating incommensurate magnetic order stabilized by Kitaev interactions in γ\gamma-Li2IrO3

    Full text link
    Materials that realize Kitaev spin models with bond-dependent anisotropic interactions have long been searched for, as the resulting frustration effects are predicted to stabilize novel forms of magnetic order or quantum spin liquids. Here we explore the magnetism of γ\gamma-Li2_2IrO3_3, which has the topology of a 3D Kitaev lattice of inter-connected Ir honeycombs. Using resonant magnetic x-ray diffraction we find a complex, yet highly-symmetric incommensurate magnetic structure with non-coplanar and counter-rotating Ir moments. We propose a minimal Kitaev-Heisenberg Hamiltonian that naturally accounts for all key features of the observed magnetic structure. Our results provide strong evidence that γ\gamma-Li2_2IrO3_3 realizes a spin Hamiltonian with dominant Kitaev interactions.Comment: 10 pages, 7 figure
    • …
    corecore