37 research outputs found

    Metastatic Breast Cancer: Biomolecular Characterization and Targeted Therapy

    Get PDF
    Metastasis is a complex process that remains a major challenge in the clinical management of cancer, because most cancer-related deaths are attributed to disseminated disease rather than the primary tumor. Despite the significant advances in the prediction of prognosis, and therapeutic management of primary breast cancers, coupled with the substantial improvement in our understanding of the molecular determinants of metastasis, breast cancer relapse and death rates remain unacceptably high. The aim of the research presented in this thesis was to characterize the biomolecular heterogeneity of breast cancer across tumor progression stages and to identify novel biomarkers and therapeutic strategies which may improve prognostication and personalization of therapy for women diagnosed with metastatic breast cancer. By analysis of tumor biopsies collected at different stages of disease progression, we showed that, in general, the phenotype of the primary tumor is typically conserved during tumor progression. However, in a clinically relevant number of cases, a phenotypic drift in biomarkers and tumor molecular subtypes occurs longitudinally with disease progression, with a change to a more aggressive phenotype being associated with an inferior clinical outcome. We also uncovered that breast cancer liver metastases are transcriptionally different from metastases in other anatomical sites and identified candidate liver metastasis-selective genes with the potential to specifically predict liver metastatic relapse and more generally, the time to any recurrence in early stage breast cancer. Furthermore, we demonstrated that co-targeting of PARP1 and PI3K may represent an improved and specific treatment strategy for BRCA1 deficient breast cancers. The results we present continue to emphasize the clinical significance of breast cancer heterogeneity and highlight possible ways to improve the accuracy of predicting prognosis and effectively treating patients with metastatic disease, a step towards achieving the promise of personalized cancer management and overcoming the clinical burden of metastatic breast cancer

    Claudin-2 is an independent negative prognostic factor in breast cancer and specifically predicts early liver recurrences.

    Get PDF
    Predicting any future metastatic site of early-stage breast cancer is important as it significantly influences the prognosis of advanced disease. This study aimed at investigating the potential of claudin-2, over-expressed in breast cancer liver metastases, as a biomarker for predicting liver metastatic propensity in primary breast cancer

    Transcriptional profiling of breast cancer metastases identifies liver metastasis-selective genes associated with adverse outcome in luminal A primary breast cancer.

    Get PDF
    The complete molecular basis of the organ-specificity of metastasis is elusive. This study aimed to provide an independent characterization of the transcriptional landscape of breast cancer metastases with the specific objective to identify liver metastasis-selective genes of prognostic importance following primary tumor diagnosis

    Clinical and molecular complexity of breast cancer metastases.

    Get PDF
    Clinical oncology is advancing toward a more personalized treatment orientation, making the need to understand the biology of metastasis increasingly acute. Dissecting the complex molecular, genetic and clinical phenotypes underlying the processes involved in the development of metastatic disease, which remains the principal cause of cancer-related deaths, could lead to the identification of more effective prognostication and targeted approaches to prevent and treat metastases. The past decade has witnessed significant progress in the field of cancer metastasis research. Clinical and technological milestones have been reached which have tremendously enriched our understanding of the complex pathways undertaken by primary tumors to progress into lethal metastases and how some of these processes might be amenable to therapy. The aim of this review article is to highlight the recent advances toward unraveling the clinical and molecular complexity of breast cancer metastases. We focus on genes mediating breast cancer metastases and organ-specific tropism, and discuss gene signatures for prediction of metastatic disease. The challenges of translating this information into clinically applicable tools for improving the prognostication of the metastatic potential of a primary breast tumor, as well as for therapeutic interventions against latent and active metastatic disease are addressed

    Insensitivity to atorvastatin is associated with increased accumulation of intracellular lipid droplets and fatty acid metabolism in breast cancer cells

    No full text
    Apart from the relevant lipid-lowering effects, statins have demonstrated significant, although heterogeneous, anti-tumor activities in preventing breast cancer (BC) progression. To characterize the critical pathways behind the diverse responses to therapy, we investigated statin-induced changes in regulation of lipid metabolism and abundance of neutral lipid-containing cytoplasmic lipid droplets (LDs) in BC cells displaying different sensitivity to atorvastatin. Following atorvastatin treatment, accumulated LD levels inversely mirrored the marginal anti-proliferative effects in a dose and time-dependent manner in the less-sensitive BC cells. Transcriptional profiling excluded dysregulation of lipid uptake and efflux as specific mechanisms associated with differences in LD accumulation and anti-proliferative effects of atorvastatin. Notably, significant upregulation of genes involved in unsaturated fatty acid metabolism [stearoyl-CoA desaturase (SCD)] and cholesterol biosynthesis [3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR)], were associated with atorvastatin insensitivity. Taken together, the increased ability to store neutral lipids in LDs as consequence of atorvastatin treatment likely confers a proliferative advantage to BC cells and may serve as potential biomarker of statin resistance in BC. Contributions of cholesterol biosynthesis and unsaturated fatty acid metabolism to LD formation should be thoroughly explored for better understanding of the molecular mechanisms underlying statin-induced effects against BC progression

    High expression of cholesterol biosynthesis genes is associated with resistance to statin treatment and inferior survival in breast cancer

    No full text
    There is sufficient evidence that statins have a protective role against breast cancer proliferation and recurrence, but treatment predictive biomarkers are lacking. Breast cancer cell lines displaying diverse sensitivity to atorvastatin were subjected to global transcriptional profiling and genes significantly altered by statin treatment were identified. Atorvastatin treatment strongly inhibited proliferation in estrogen receptor (ER) negative cell lines and a commensurate response was also evident on the genome-wide transcriptional scale, with ER negative cells displaying a robust deregulation of genes involved in the regulation of cell cycle progression and apoptosis. Interestingly, atorvastatin upregulated genes involved in the cholesterol biosynthesis pathway in all cell lines, irrespective of sensitivity to statin treatment. However, the level of pathway induction; measured as the fold change in transcript levels, was inversely correlated to the effect of statin treatment on cell growth. High expression of cholesterol biosynthesis genes before treatment was associated with resistance to statin therapy in cell lines and clinical biopsies. Furthermore, high expression of cholesterol biosynthesis genes was independently prognostic for a shorter recurrence-free and overall survival, especially among ER positive tumors. Dysregulation of cholesterol biosynthesis is therefore predictive for both sensitivity to anti-cancer statin therapy and prognosis following primary breast cancer diagnosis

    High CYP27A1 expression is a biomarker of favorable prognosis in premenopausal patients with estrogen receptor positive primary breast cancer

    No full text
    27-hydroxycholesterol (27HC), synthesized from cholesterol by the enzyme CYP27A1, differentially impacts estrogen receptor positive (ER+) breast cancer (BC) cell growth depending on estrogen levels. This study examined the association between CYP27A1 expression and prognosis in a cohort of 193 premenopausal patients with lymph node-negative primary BC with limited exposure to adjuvant systemic cancer treatments. In multivariable analyses among patients with ER+ tumors, high CYP27A1 protein and mRNA expressions were associated with four- and eight-fold reductions in the incidence of distant recurrence-free survival events: HRadj = 0.26, 95% CI = 0.07–0.93 and HRadj = 0.13, 95% CI = 0.03–0.60, respectively. In vitro studies revealed that 27HC treatment potently inhibited ER+ BC cell proliferation under lipid-depleted conditions regardless of estradiol levels, transcriptionally mediated through the downregulation of ER signaling with a concomitant upregulation of cholesterol export. Importantly, if validated, these results may have implications for adjuvant treatment decisions in premenopausal patients, especially when de-escalation of therapy is being considered

    Adipocytes and Obesity-Related Conditions Jointly Promote Breast Cancer Cell Growth and Motility : Associations With CAP1 for Prognosis

    Get PDF
    The global increase in overweight and obesity rates represent pressing public health concerns associated with severe comorbidities, amongst a rising incidence and impaired outcome of breast cancer. Yet, biological explanations for how obesity affects breast cancer are incompletely mapped. Herein, the joint impact by differentiated 3T3-L1 adipocytes and obesity-related metabolic conditions on breast cancer cells was evaluated in vitro and adipocyte-derived mediators assessed. Adipokine receptor expression was explored among breast cancer cell lines (n = 47) and primary breast tumors (n = 1,881), where associations with survival outcomes were investigated. Adipocytes and metabolic complications jointly stimulated breast cancer cell proliferation and motility, with phenotype-specific differences. Resistin was among the top modulated adipokines secreted by 3T3-L1 adipocytes under obesity-associated metabolic conditions compared with normal physiology. The newly identified resistin receptor, CAP1, was expressed across a large panel of breast cancer cell lines and primary breast tumors. CAP1 was associated with poor tumor characteristics with higher CAP1 expression among estrogen receptor (ER)-negative tumors, relative to ER-positive tumors (P = 0.025), and higher histological grades (P = 0.016). High CAP1 tumor expression was associated with shorter overall survival (adjusted hazard ratio [HRadj] 1.54; 95% confidence interval [CI], 1.11-2.13) and relapse-free survival (HRadj 1.47; 95% CI, 1.10-1.96), compared with low or intermediate CAP1 expression, particularly among ER-positive tumors or lymph node positive tumors. Together, these translational data demonstrate that the adipocyte secretome promote breast cancer cell proliferation and motility and highlight a potential role of CAP1 regarding breast cancer outcome-results that warrant further investigation to elucidate the obesity-breast cancer link in human pathology

    Statin use, HMGCR expression, and breast cancer survival – The Malmö Diet and Cancer Study

    No full text
    Statins, commonly used to treat hypercholesterolemia, have also been proposed as anti-cancer agents. The identification of a predictive marker is essential. The 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (HMGCR), which is inhibited by statins, might serve as such a marker. Thorough antibody validation was performed for four different HMGCR antibodies. Tumor expression of HMGCR (#AMAb90619, CL0260, Atlas Antibodies, Stockholm, Sweden) was evaluated in the Malmö Diet and Cancer Study breast cancer cohort. Statin use and cause of death data were retrieved from the Swedish Prescribed Drug Register and Swedish Death Registry, respectively. Breast cancer-specific mortality (BCM) according to statin use and HMGCR expression were analyzed using Cox regression models. Three-hundred-twelve of 910 breast cancer patients were prescribed statins; 74 patients before and 238 after their breast cancer diagnosis. HMGCR expression was assessable for 656 patients; 119 showed negative, 354 weak, and 184 moderate/strong expressions. HMGCR moderate/strong expression was associated with prognostically adverse tumor characteristics as higher histological grade, high Ki67, and ER negativity. HMGCR expression was not associated with BCM. Neither was statin use associated with BCM in our study. Among breast cancer patients on statins, no or weak HMGCR expression predicted favorable clinical outcome. These suggested associations need further testing in larger cohorts
    corecore