756 research outputs found

    Compact Source of EPR Entanglement and Squeezing at Very Low Noise Frequencies

    Get PDF
    We report on the experimental demonstration of strong quadrature EPR entanglement and squeezing at very low noise sideband frequencies produced by a single type-II, self-phase-locked, frequency degenerate optical parametric oscillator below threshold. The generated two-mode squeezed vacuum state is preserved for noise frequencies as low as 50 kHz. Designing simple setups able to generate non-classical states of light in the kHz regime is a key challenge for high sensitivity detection of ultra-weak physical effects such as gravitational wave or small beam displacement

    Report of the ultraviolet and visible sensors panel

    Get PDF
    In order to meet the science objectives of the Astrotech 21 mission set the Ultraviolet (UV) and Visible Sensors Panel made a number of recommendations. In the UV wavelength range of 0.01 to 0.3 micro-m the focus is on the need for large format high quantum efficiency, radiation hard 'solar-blind' detectors. Options recommended for support include Si and non-Si charge coupled devices (CCDs) as well as photocathodes with improved microchannel plate readouts. For the 0.3 to 0.9 micro-m range, it was felt that Si CCDs offer the best option for high quantum efficiencies at these wavelengths. In the 0.9 to 2.5 micro-m the panel recommended support for the investigation of monolithic arrays. Finally, the panel noted that the implementation of very large arrays will require new data transmission, data recording, and data handling technologies

    Cooling to the Ground State of Axial Motion for One Atom Strongly Coupled to an Optical Cavity

    Get PDF
    Localization to the ground state of axial motion is demonstrated for a single, trapped atom strongly coupled to the field of a high finesse optical resonator. The axial atomic motion is cooled by way of coherent Raman transitions on the red vibrational sideband. An efficient state detection scheme enabled by strong coupling in cavity QED is used to record the Raman spectrum, from which the state of atomic motion is inferred. We find that the lowest vibrational level of the axial potential with zero-point energy 13uK is occupied with probability P0~0.95.Comment: 5 pages, 4 figure

    Non-symmetric entanglement of atomic ensembles

    Full text link
    The entanglement of multi-atom quantum states is considered. In order to cancel noise due to inhomogeneous light atom coupling, the concept of matched multi-atom observables is proposed. As a means to eliminate an important form of decoherence this idea should be of broad relevance for quantum information processing with atomic ensembles. The general approach is illustrated on the example of rotation angle measurement, and it is shown that the multi-atom states that were thought to be only weakly entangled can exhibit near-maximum entanglement.Comment: to appear in Physical Review Letter

    Non-Markovian Dynamics of Entanglement for Multipartite Systems

    Full text link
    Entanglement dynamics for a couple of two-level atoms interacting with independent structured reservoirs is studied using a non-perturbative approach. It is shown that the revival of atom entanglement is not necessarily accompanied by the sudden death of reservoir entanglement, and vice versa. In fact, atom entanglement can revive before, simultaneously or even after the disentanglement of reservoirs. Using a novel method based on the population analysis for the excited atomic state, we present the quantitative criteria for the revival and death phenomena. For giving a more physically intuitive insight, the quasimode Hamiltonian method is applied. Our quantitative analysis is helpful for the practical engineering of entanglement.Comment: 10 pages and 4 figure

    Simulations of atomic trajectories near a dielectric surface

    Get PDF
    We present a semiclassical model of an atom moving in the evanescent field of a microtoroidal resonator. Atoms falling through whispering-gallery modes can achieve strong, coherent coupling with the cavity at distances of approximately 100 nanometers from the surface; in this regime, surface-induced Casmir-Polder level shifts become significant for atomic motion and detection. Atomic transit events detected in recent experiments are analyzed with our simulation, which is extended to consider atom trapping in the evanescent field of a microtoroid.Comment: 29 pages, 10 figure

    Quantum jumps in hydrogen-like systems

    Get PDF
    In this paper it is shown that the Lyman-α\alpha transition of a single hydrogen-like system driven by a laser exhibits macroscopic dark periods, provided there exists an additional constant electric field. We describe the photon-counting process under the condition that the polarization of the laser coincides with the direction of the constant electric field. The theoretical results are given for the example of 4He+^4{He}^+. We show that the emission behavior depends sensitively on the Lamb shift (W.E. Lamb, R.C. Retherford, Phys. Rev. 72, 241 (1947)) between the 2s1/22s_{1/2} and 2p1/22p_{1/2} energy levels. A possibly realizable measurement of the mean duration of the dark periods should give quantitative information about the above energy difference by using the proposed photon-counting process.Comment: 7 pages RevTeX + 2 figures Phys. Rev A accepte

    Conditional large Fock state preparation and field state reconstruction in Cavity QED

    Get PDF
    We propose a scheme for producing large Fock states in Cavity QED via the implementation of a highly selective atom-field interaction. It is based on Raman excitation of a three-level atom by a classical field and a quantized field mode. Selectivity appears when one tunes to resonance a specific transition inside a chosen atom-field subspace, while other transitions remain dispersive, as a consequence of the field dependent electronic energy shifts. We show that this scheme can be also employed for reconstructing, in a new and efficient way, the Wigner function of the cavity field state.Comment: 4 Revtex pages with 3 postscript figures. Submitted for publicatio

    Nonclassical Interference Effects In The Radiation From Coherently Driven Uncorrelated Atoms

    Get PDF
    We demonstrate the existence of new nonclassical correlations in the radiation of two atoms, which are coherently driven by a continuous laser source. The photon-photon-correlations of the fluorescence light show a spatial interferene pattern not present in a classical treatment. A feature of the new phenomenon is, that bunched and antibunched light is emitted in different spatial directions. The calculations are performed analytically. It is pointed out, that the correlations are induced by state reduction due to the measurement process when the detection of the photons does not distinguish between the atoms. It is interesting to note, that the phenomena show up even without any interatomic interaction.Comment: 4 pages, 6 Figure

    Trapping of single atoms in cavity QED

    Get PDF
    By integrating the techniques of laser cooling and trapping with those of cavity quantum electrodynamics (QED), single Cesium atoms have been trapped within the mode of a small, high finesse optical cavity in a regime of strong coupling. The observed lifetime for individual atoms trapped within the cavity mode is τ≈28\tau \approx 28ms, and is limited by fluctuations of light forces arising from the far-detuned intracavity field. This initial realization of trapped atoms in cavity QED should enable diverse protocols in quantum information science.Comment: 4 pages, 4 figure
    • 

    corecore