11 research outputs found

    Biomechanical considerations in the pathogenesis of osteoarthritis of the elbow

    Get PDF
    Osteoarthritis is the most common joint disease and a major cause of disability. Distinct biological processes are considered crucial for the development of osteoarthritis and are assumed to act in concert with additional risk factors to induce expression of the disease. In the classical weightbearing joints, one such risk factor is an unfavourable biomechanical environment about the joint. While the elbow has long been considered a non-weightbearing joint, it is now assumed that the tissues of the upper extremity may be stressed to similar levels as those of the lower limb, and that forces across the elbow are in fact very high when the joint is extended from a flexed position. This review examined the available basic science, preclinical and clinical evidence regarding the role of several unfavourable biomechanical conditions about the elbow on the development of osteoarthritis: post-traumatic changes, osteochondritis dissecans, instability or laxity and malalignment. Post-traumatic osteoarthritis following fractures is well recognized, however, the role of overload or repetitive microtrauma as risk factors for post-traumatic osteoarthritis is unclear. The natural course of untreated cartilage defects in general, and osteochondritis dissecans at the elbow in particular, remains incompletely understood to date. However, larger lesions and older age seem to be associated with more symptoms and radiographic changes in the long term. Instability seems to play a role, although the association between instability and osteoarthritis is not yet clearly defined. No data are available on the association of malalignment and osteoarthritis, but based on force estimations across the elbow joint, it seems reasonable to assume an associatio

    The Dynamics of Nucleotide Variants in the Progression from Low–Intermediate Myeloma Precursor Conditions to Multiple Myeloma: Studying Serial Samples with a Targeted Sequencing Approach

    No full text
    Multiple myeloma (MM), or Kahler’s disease, is an incurable plasma cell (PC) cancer in the bone marrow (BM). This malignancy is preceded by one or more asymptomatic precursor conditions, monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering multiple myeloma (SMM). The molecular mechanisms and exact cause of this progression are still not completely understood. In this study, the mutational profile underlying the progression from low–intermediate risk myeloma precursor conditions to MM was studied in serial BM smears. A custom capture-based sequencing platform was developed, including 81 myeloma-related genes. The clonal evolution of single nucleotide variants and short insertions and deletions was studied in serial BM smears from 21 progressed precursor patients with a median time of progression of six years. From the 21 patients, four patients had no variation in one of the 81 studied genes. Interestingly, in 16 of the 17 other patients, at least one variant present in MM was also detected in its precursor BM, even years before progression. Here, the variants were present in the pre-stage at a median of 62 months before progression to MM. Studying these paired BM samples contributes to the knowledge of the evolutionary genetic landscape and provides additional insight into the mutational behavior of mutant clones over time throughout progression

    You are what you eat, and so are your children: the impact of micronutrients on the epigenetic programming of offspring

    No full text
    corecore