89 research outputs found

    Evaluation of resting traps to examine the behaviour and ecology of mosquito vectors in an area of rapidly changing land use in Sabah, Malaysian Borneo.

    Get PDF
    BACKGROUND: Widespread deforestation occurring in the tropics is hypothesized to impact the transmission of vector-borne diseases (VBD). Predicting how environmental changes will impact VBD transmission is dependent on understanding the ecology and behaviour of potential vector species outside of domestic settings. However there are few reliable sampling tools for measuring the habitat preference and host choice of mosquito vectors; with almost none suitable for sampling recently blood-fed, resting mosquitoes. This study evaluated the use of two mosquito traps: the resting bucket (RB) and sticky resting bucket (SRB) traps relative to CDC backpack aspiration (CDC) for sampling mosquitoes resting in a range of habitats representing a gradient of deforestation. Eight habitats were selected for sampling around two villages in Kudat District, Malaysian Borneo, to reflect the range of habitats available to mosquitoes in and around human dwellings, and nearby forest habitats where reservoir hosts are present: secondary forest (edge, interior and canopy); plantations (palm and rubber); and human settlements (inside, under and around houses). RESULTS: Over 31 days, 2243 mosquitoes were collected in 5748 discrete collections. Nine mosquito genera were sampled with Aedes and Culex species being present in all habitats and most abundant. RB and CDC backpack aspiration were most efficient for sampling Culex whereas CDC backpack aspiration and SRB were most efficient for Aedes. Most Aedes identified to species level were Ae. albopictus (91%), with their abundance being highest in forest edge habitats. In contrast, Culex were most abundant under houses. Most blood-fed mosquitoes (76%) were found in human settlements; with humans and chickens being the only blood source. CONCLUSIONS: RB and SRB traps proved capable of sampling mosquitoes resting in all sampled habitats. However, sampling efficiency was generally low (c.0.1 per trap per day), necessitating traps to be deployed in high numbers for mosquito detection. None of the traps were effective for sampling zoonotic malaria vectors; however, SRB collected relatively higher numbers of the dengue vector Ae. albopictus. The higher abundance of mosquitoes in forest edge habitats indicates the potential value of these traps for investigating sylvatic dengue transmission. This study has demonstrated the merits in application of simple resting traps for characterising mosquito vector resting behaviour outside of the home

    Quantifying human-animal contact rates in Malaysian Borneo: Influence of agricultural landscapes on contact with potential zoonotic disease reservoirs

    Get PDF
    Changing landscapes across the globe, but particularly in Southeast Asia, are pushing humans and animals closer together and may increase the likelihood of zoonotic spillover events. Malaysian Borneo is hypothesized to be at high risk of spillover events due to proximity between reservoir species and humans caused by recent deforestation in the region. However, the relationship between landscape and human-animal contact rates has yet to be quantified. An environmentally stratified cross-sectional survey was conducted in Sabah, Malaysia in 2015, collecting geolocated questionnaire data on potential risk factors for contact with animals for 10,100 individuals. 51% of individuals reported contact with poultry, 46% with NHPs, 30% with bats, and 2% with swine. Generalised linear mixed models identified occupational and demographic factors associated with increased contact with these species, which varied when comparing wildlife to domesticated animals. Reported contact rates with each animal group were integrated with remote sensing-derived environmental data within a Bayesian framework to identify regions with high probabilities of contact with animal reservoirs. We have identified high spatial heterogeneity of contact with animals and clear associations between agricultural practices and high animal rates. This approach will help inform public health campaigns in at-risk populations and can improve pathogen surveillance efforts on Malaysian Borneo. This method can additionally serve as a framework for researchers looking to identify targets for future pathogen detection in a chosen region of study

    Human exposure to zoonotic malaria vectors in village, farm and forest habitats in Sabah, Malaysian Borneo.

    Get PDF
    The zoonotic malaria parasite, Plasmodium knowlesi, is now a substantial public health problem in Malaysian Borneo. Current understanding of P. knowlesi vector bionomics and ecology in Sabah comes from a few studies near the epicentre of human cases in one district, Kudat. These have incriminated Anopheles balabacensis as the primary vector, and suggest that human exposure to vector biting is peri-domestic as well as in forest environments. To address the limited understanding of vector ecology and human exposure risk outside of Kudat, we performed wider scale surveillance across four districts in Sabah with confirmed transmission to investigate spatial heterogeneity in vector abundance, diversity and infection rate. Entomological surveillance was carried out six months after a cross-sectional survey of P. knowlesi prevalence in humans throughout the study area; providing an opportunity to investigate associations between entomological indicators and infection. Human-landing catches were performed in peri-domestic, farm and forest sites in 11 villages (3-4 per district) and paired with estimates of human P. knowlesi exposure based on sero-prevalence. Anopheles balabacensis was present in all districts but only 6/11 villages. The mean density of An. balabacensis was relatively low, but significantly higher in farm (0.094/night) and forest (0.082/night) than peri-domestic areas (0.007/night). Only one An. balabacensis (n = 32) was infected with P. knowlesi. Plasmodium knowlesi sero-positivity in people was not associated with An. balabacensis density at the village-level however post hoc analyses indicated the study had limited power to detect a statistical association due low vector density. Wider scale sampling revealed substantial heterogeneity in vector density and distribution between villages and districts. Vector-habitat associations predicted from this larger-scale surveillance differed from those inferred from smaller-scale studies in Kudat; highlighting the importance of local ecological context. Findings highlight potential trade-offs between maximizing temporal versus spatial breadth when designing entomological surveillance; and provide baseline entomological and epidemiological data to inform future studies of entomological risk factors for human P. knowlesi infection

    Seasonal and spatial dynamics of the primary vector of plasmodium knowlesi within a major transmission focus in Sabah, Malaysia

    Get PDF
    Background The simian malaria parasite Plasmodium knowlesi is emerging as a public health problem in Southeast Asia, particularly in Malaysian Borneo where it now accounts for the greatest burden of malaria cases and deaths. Control is hindered by limited understanding of the ecology of potential vector species. Methodology/Principal Findings We conducted a one year longitudinal study of P. knowlesi vectors in three sites within an endemic area of Sabah, Malaysia. All mosquitoes were captured using human landing catch. Anopheles mosquitoes were dissected to determine, oocyst, sporozoites and parous rate. Anopheles balabacensis is confirmed as the primary vector of. P. knowlesi (using nested PCR) in Sabah for the first time. Vector densities were significantly higher and more seasonally variable in the village than forest or small scale farming site. However An. balabacensis survival and P. knowlesi infection rates were highest in forest and small scale farm sites. Anopheles balabacensis mostly bites humans outdoors in the early evening between 1800 to 2000hrs. Conclusions/Significance This study indicates transmission is unlikely to be prevented by bednets. This combined with its high vectorial capacity poses a threat to malaria elimination programmes within the region. Author Summary The first natural infection of Plasmodium knowlesi was reported 40 years ago. At that time it was perceived that the infection would not affect humans. However, now P. knowlesi is the predominant malaria species (38% of the cases) infecting people in Malaysia and is a notable obstacle to malaria elimination in the country. Plasmodium knowlesi has also been reported from all countries in Southeast Asia with the exception of Lao PDR and Timor Leste. In Sabah, Malaysian Borneo cases of human P. knowlesi are increasing. Thus, a comprehensive understanding of the bionomics of the vectors is required so as to enable proper control strategies. Here, we conducted a longitudinal study in Kudat district, Sabah, to determine and characterize the vectors of P. knowlesi within this transmission foci. Anopheles balabacensis was the predominant mosquito in all study sites and is confirmed as vector for P. knowlesi and other simian malaria parasites. The peak biting time was in the early part of the evening between1800 to 2000. Thus, breaking the chain of transmission is an extremely challenging task for the malaria elimination programme

    Achieving global malaria eradication in changing landscapes.

    Get PDF
    Land use and land cover changes, such as deforestation, agricultural expansion and urbanization, are one of the largest anthropogenic environmental changes globally. Recent initiatives to evaluate the feasibility of malaria eradication have highlighted impacts of landscape changes on malaria transmission and the potential of these changes to undermine malaria control and elimination efforts. Multisectoral approaches are needed to detect and minimize negative impacts of land use and land cover changes on malaria transmission while supporting development aiding malaria control, elimination and ultimately eradication. Pathways through which land use and land cover changes disrupt social and ecological systems to increase or decrease malaria risks are outlined, identifying priorities and opportunities for a global malaria eradication campaign. The impacts of land use and land cover changes on malaria transmission are complex and highly context-specific, with effects changing over time and space. Landscape changes are only one element of a complex development process with wider economic and social dimensions affecting human health and wellbeing. While deforestation and other landscape changes threaten to undermine malaria control efforts and have driven the emergence of zoonotic malaria, most of the malaria elimination successes have been underpinned by agricultural development and land management. Malaria eradication is not feasible without addressing these changing risks while, conversely, consideration of malaria impacts in land management decisions has the potential to significantly accelerate progress towards eradication. Multisectoral cooperation and approaches to linking malaria control and environmental science, such as conducting locally relevant ecological monitoring, integrating landscape data into malaria surveillance systems and designing environmental management strategies to reduce malaria burdens, are essential to achieve malaria eradication

    A comparative evaluation of thermal camera and visual counting methods for primate census in a riparian forest at the Lower Kinabatangan Wildlife Sanctuary (LKWS), Malaysian Borneo.

    Get PDF
    A number of primate census techniques have been developed over the past half-century, each of which have advantages and disadvantages in terms of resources required by researchers (e.g., time and costs), availability of technologies, and effectiveness in different habitat types. This study aims to explore the effectiveness of a thermal imaging technique to estimate the group size of different primate species populations in a degraded riparian forest in the Lower Kinabatangan Wildlife Sanctuary (LKWS), Sabah. We compared this survey technique to the conventional visual counting method along the riverbank. For 38 days, a total of 138 primate groups were observed by thermal camera and visually throughout the study. Optimal conditions for the thermal camera were clear weather, not more than 100 m distance from the observer to the targeted area, boat speed ranging between 5 and 12 km/h, and early morning between 04:30 and 05:30 am. The limitations of the thermal cameras include the inability to identify individual species, sexes, age classes, and also to discern between animals closely aggregated (i.e., mothers with attached infants). Despite these limitations with the thermal camera technique, 1.78 times more primates were detected than counting by eye (p < 0.001), showing the potential benefit of using thermal cameras as an important tool in primate surveys. Nevertheless, ground truthing must be conducted immediately after, or simultaneously during, the thermal survey to verify the species of animals observed on the thermal imagery

    Association between Landscape Factors and Spatial Patterns of Plasmodium knowlesi Infections in Sabah, Malaysia.

    Get PDF
    The zoonotic malaria species Plasmodium knowlesi has become the main cause of human malaria in Malaysian Borneo. Deforestation and associated environmental and population changes have been hypothesized as main drivers of this apparent emergence. We gathered village-level data for P. knowlesi incidence for the districts of Kudat and Kota Marudu in Sabah state, Malaysia, for 2008-2012. We adjusted malaria records from routine reporting systems to reflect the diagnostic uncertainty of microscopy for P. knowlesi. We also developed negative binomial spatial autoregressive models to assess potential associations between P. knowlesi incidence and environmental variables derived from satellite-based remote-sensing data. Marked spatial heterogeneity in P. knowlesi incidence was observed, and village-level numbers of P. knowlesi cases were positively associated with forest cover and historical forest loss in surrounding areas. These results suggest the likelihood that deforestation and associated environmental changes are key drivers in P. knowlesi transmission in these areas

    Natural Human Infections With Plasmodium cynomolgi and Other Malaria Species in an Elimination Setting in Sabah, Malaysia.

    Get PDF
    To determine the presence and species composition of malaria infections, we screened a subset of samples collected during a cross-sectional survey in Northern Sabah, Malaysia using highly sensitive molecular techniques. Results identified 54 asymptomatic submicroscopic malaria infections, including a large cluster of Plasmodium falciparum and 3 P. knowlesi infections. We additionally identified 2 monoinfections with the zoonotic malaria Plasmodium cynomolgi, both in individuals reporting no history of forest activities or contact with macaques. Results highlight the need for improved surveillance strategies to detect these infections and determine public health impacts

    Epidemiology of the zoonotic malaria Plasmodium knowlesi in changing landscapes

    Get PDF
    Within the past two decades, incidence of human cases of the zoonotic malaria Plasmodium knowlesi has increased markedly. P. knowlesi is now the most common cause of human malaria in Malaysia and threatens to undermine malaria control programmes across Southeast Asia. The emergence of zoonotic malaria corresponds to a period of rapid deforestation within this region. These environmental changes impact the distribution and behaviour of the simian hosts, mosquito vector species and human populations, creating new opportunities for P. knowlesi transmission. Here, we review how landscape changes can drive zoonotic disease emergence, examine the extent and causes of these changes across Southeast and identify how these mechanisms may be impacting P. knowlesi dynamics. We review the current spatial epidemiology of reported P. knowlesi infections in people and assess how these demographic and environmental changes may lead to changes in transmission patterns. Finally, we identify opportunities to improve P. knowlesi surveillance and develop targeted ecological interventions within these landscapes

    Individual-level factors associated with the risk of acquiring human Plasmodium knowlesi malaria in Malaysia: a case-control study.

    Get PDF
    BACKGROUND: The emergence of human malaria due to the monkey parasite Plasmodium knowlesi threatens elimination efforts in southeast Asia. Changes in land use are thought to be driving the rise in reported P knowlesi cases, but the role of individual-level factors is unclear. To address this knowledge gap we assessed human and environmental factors associated with zoonotic knowlesi malaria risk. METHODS: We did this population-based case-control study over a 2 year period in the state of Sabah in Malaysia. We enrolled cases with microscopy-positive, PCR-confirmed malaria who presented to two primary referral hospitals serving the adjacent districts of Kudat and Kota Marudu. We randomly selected three malaria-negative community controls per case, who were matched by village within 2 weeks of case detection. We obtained questionnaire data on demographics, behaviour, and residential malaria risk factors, and we also assessed glucose-6-phosphate dehydrogenase (G6PD) enzyme activity. We used conditional logistic regression models to evaluate exposure risk between P knowlesi cases and controls, and between P knowlesi and human-only Plasmodium spp malaria cases. FINDINGS: From Dec 5, 2012, to Jan 30, 2015, we screened 414 patients and subsequently enrolled 229 cases with P knowlesi malaria mono-infection and 91 cases with other Plasmodium spp infection. We enrolled 953 matched controls, including 683 matched to P knowlesi cases and 270 matched to non-P knowlesi cases. Age 15 years or older (adjusted odds ratio [aOR] 4·16, 95% CI 2·09-8·29, p<0·0001), male gender (4·20, 2·54-6·97, p<0·0001), plantation work (3·50, CI, 1·34-9·15, p=0·011), sleeping outside (3·61, 1·48-8·85, p=0·0049), travel (2·48, 1·45-4·23, p=0·0010), being aware of the presence of monkeys in the past 4 weeks (3·35, 1·91-5·88, p<0·0001), and having open eaves or gaps in walls (2·18, 1·33-3·59, p=0·0021) were independently associated with increased risk of symptomatic P knowlesi infection. Farming occupation (aOR 1·89, 95% CI 1·07-3·35, p=0·028), clearing vegetation (1·89, 1·11-3·22, p=0·020), and having long grass around the house (2·08, 1·25-3·46, p=0·0048) increased risk for P knowlesi infection but not other Plasmodium spp infection. G6PD deficiency seemed to be protective against P knowlesi (aOR 0·20, 95% CI 0·04-0·96, p=0·045), as did residual insecticide spraying of household walls (0·52, 0·31-0·87, p=0·014), with the presence of young sparse forest (0·35, 0·20-0·63, p=00040) and rice paddy around the house (0·16, 0·03-0·78, 0·023) also associated with decreased risk. INTERPRETATION: Adult men working in agricultural areas were at highest risk of knowlesi malaria, although peri-domestic transmission also occurrs. Human behavioural factors associated with P knowlesi transmission could be targeted in future public health interventions. FUNDING: United Kingdom Medical Research Council, Natural Environment Research Council, Economic and Social Research Council, and Biotechnology and Biosciences Research Council
    corecore