47 research outputs found

    Catch the ruler: concurrent validity and test–retest reliability of the ReacStick measures of reaction time and inhibitory executive function in older people

    Get PDF
    Background: Reduced cognitive function, particularly executive function (EF), is associated with an increased risk of falling in older people. We evaluated the utility of the ReacStick test, a clinical test of reaction time, and inhibitory EF developed, for young athletes, for fall-risk assessment in older people. Aims: To evaluate the psychometric properties of ReacStick measures of reaction time and executive functioning in healthy community-dwelling older people. Methods: 140 participants (aged 77 ± 5 years) underwent testing. Two test conditions—simple and inhibitory go/no-go—provided measures of reaction time, recognition load (difference in reaction time between conditions), and go/no-go accuracy. Concurrent validity was evaluated against the conventional tests of reaction time and EF (simple hand reaction time, trail-making test, and Stroop colour test). Discriminant ability was determined for fall-risk factors (age, gender, physiological profile assessment, and fall history). Test–retest reliability after 1 week was evaluated in 30 participants. Results: ReacStick reaction time correlated with tests of reaction time and EF, recognition load correlated with inhibitory EF, and go accuracy correlated with reaction time and inhibitory EF. No-go accuracy was not significantly correlated with any of the reaction time and EF tests. Test–retest reliability was good-to-excellent (ICC > 0.6) for all the outcomes. ReacStick reaction time discriminated between groups based on age, recognition load between genders, and no-go accuracy between retrospective fallers and non-fallers. Discussion: An unavoidable time pressure may result in complementary information to the traditional measures. Conclusions: The ReacStick is a reliable test of reaction time and inhibitory EF in older people and could have value for fall-risk assessment

    Gait speed assessed by a 4-m walk test is not representative of daily-life gait speed in community-dwelling adults

    Get PDF
    Objectives: Standardized tests of gait speed are regarded as being of clinical value, but they are typically performed under optimal conditions, and may not reflect daily-life gait behavior. The aim of this study was to compare 4-m gait speed to the distribution of daily-life gait speed. Study design: The cross-sectional Grey Power cohort included 254 community-dwelling participants aged 18 years or more. Main outcome measures: Pearson's correlations were used to compare gait speed assessed using a timed 4-m walk test at preferred pace, and daily-life gait speed obtained from tri-axial lower-back accelerometer data over seven consecutive days. Results: Participants (median age 66.7 years [IQR 59.4–72.5], 65.7% female) had a mean 4-m gait speed of 1.43 m/s (SD 0.21), and a mean 50th percentile of daily-life gait speed of 0.90 m/s (SD 0.23). Ninety-six percent had a bimodal distribution of daily-life gait speed, with a mean 1st peak of 0.61 m/s (SD 0.15) and 2nd peak of 1.26 m/s (SD 0.23). The percentile of the daily-life distribution that corresponded best with the individual 4-m gait speed had a median value of 91.2 (IQR 75.4–98.6). The 4-m gait speed was very weakly correlated to the 1st and 2nd peak (r = 0.005, p = 0.936 and r=0.181, p = 0.004), and the daily-life gait speed percentiles (range: 1st percentile r = 0.076, p = 0.230 to 99th percentile r = 0.399, p < 0.001; 50th percentile r = 0.132, p = 0.036). Conclusions: The 4-m gait speed is only weakly related to daily-life gait speed. Clinicians and researchers should consider that 4-m gait speed and daily-life gait speed represent two different constructs

    Association between Sedentary Behaviour and Physical, Cognitive, and Psychosocial Status among Older Adults in Assisted Living

    Get PDF
    Objective. Identification of the factors that influence sedentary behaviour in older adults is important for the design of appropriate intervention strategies. In this study, we determined the prevalence of sedentary behaviour and its association with physical, cognitive, and psychosocial status among older adults residing in Assisted Living (AL). Methods. Participants (, mean age = 86.7) from AL sites in British Columbia wore waist-mounted activity monitors for 7 consecutive days, after being assessed with the Timed Up and Go (TUG), Montreal Cognitive Assessment (MoCA), Short Geriatric Depression Scale (GDS), and Modified Fall Efficacy Scale (MFES). Results. On average, participants spent 87% of their waking hours in sedentary behaviour, which accumulated in 52 bouts per day with each bout lasting an average of 13 minutes. Increased sedentary behaviour associated significantly with scores on the TUG (, ) and MFES (, ), but not with the MoCA or GDS. Sedentary behaviour also associated with male gender, use of mobility aid, and multiple regression with increased age. Conclusion. We found that sedentary behaviour among older adults in AL associated with TUG scores and falls-related self-efficacy, which are modifiable targets for interventions to decrease sedentary behaviour in this population

    Sensitivity of Local Dynamic Stability of Over-Ground Walking to Balance Impairment Due to Galvanic Vestibular Stimulation

    Get PDF
    Impaired balance control during gait can be detected by local dynamic stability measures. For clinical applications, the use of a treadmill may be limiting. Therefore, the aim of this study was to test sensitivity of these stability measures collected during short episodes of over-ground walking by comparing normal to impaired balance control. Galvanic vestibular stimulation (GVS) was used to impair balance control in 12 healthy adults, while walking up and down a 10 m hallway. Trunk kinematics, collected by an inertial sensor, were divided into episodes of one stroll along the hallway. Local dynamic stability was quantified using short-term Lyapunov exponents (λs), and subjected to a bootstrap analysis to determine the effects of number of episodes analysed on precision and sensitivity of the measure. λs increased from 0.50 ± 0.06 to 0.56 ± 0.08 (p = 0.0045) when walking with GVS. With increasing number of episodes, coefficients of variation decreased from 10 ± 1.3% to 5 ± 0.7% and the number of p values >0.05 from 42 to 3.5%, indicating that both precision of estimates of λs and sensitivity to the effect of GVS increased. λs calculated over multiple episodes of over-ground walking appears to be a suitable measure to calculate local dynamic stability on group level

    Fractional Stability of Trunk Acceleration Dynamics of Daily-Life Walking: Toward a Unified Concept of Gait Stability

    No full text
    Over the last decades, various measures have been introduced to assess stability during walking. All of these measures assume that gait stability may be equated with exponential stability, where dynamic stability is quantified by a Floquet multiplier or Lyapunov exponent. These specific constructs of dynamic stability assume that the gait dynamics are time independent and without phase transitions. In this case the temporal change in distance, d(t), between neighboring trajectories in state space is assumed to be an exponential function of time. However, results from walking models and empirical studies show that the assumptions of exponential stability break down in the vicinity of phase transitions that are present in each step cycle. Here we apply a general non-exponential construct of gait stability, called fractional stability, which can define dynamic stability in the presence of phase transitions. Fractional stability employs the fractional indices, α and β, of differential operator which allow modeling of singularities in d(t) that cannot be captured by exponential stability. The fractional stability provided an improved fit of d(t) compared to exponential stability when applied to trunk accelerations during daily-life walking in community-dwelling older adults. Moreover, using multivariate empirical mode decomposition surrogates, we found that the singularities in d(t), which were well modeled by fractional stability, are created by phase-dependent modulation of gait. The new construct of fractional stability may represent a physiologically more valid concept of stability in vicinity of phase transitions and may thus pave the way for a more unified concept of gait stability

    Quality of daily-life gait:Novel outcome for trials that focus on balance, mobility, and falls

    No full text
    Technological advances in inertial sensors allow for monitoring of daily-life gait characteristics as a proxy for fall risk. The quality of daily-life gait could serve as a valuable outcome for intervention trials, but the uptake of these measures relies on their power to detect relevant changes in fall risk. We collected daily-life gait characteristics in 163 older people (aged 77.5 ± 7.5, 107♀) over two measurement weeks that were two weeks apart. We present variance estimates of daily-life gait characteristics that are sensitive to fall risk and estimate the number of participants required to obtain sufficient statistical power for repeated comparisons. The provided data allows for power analyses for studies using daily-life gait quality as outcome. Our results show that the number of participants required (i.e., 8 to 343 depending on the anticipated effect size and between-measurements correlation) is similar to that generally used in fall prevention trials. We propose that the quality of daily-life gait is a promising outcome for intervention studies that focus on improving balance and mobility and reducing falls

    eHealth interventions to promote objectively measured physical activity in community-dwelling older people

    Get PDF
    eHealth solutions are increasingly being applied to deliver interventions for promoting an active lifestyle in the general population but also in older people. Objective assessment of daily physical activity (PA) is essential to accurately and reliably evaluate the effectiveness of such interventions. This review presents an overview of eHealth interventions that focus on promoting PA in community-dwelling older people, and discusses the methods used to objectively assess PA, and the effectiveness of the eHealth interventions in increasing PA. The twelve eHealth intervention studies that met our inclusion criteria used a variety of digital solutions, ranging from solely the use of an accelerometer or text messages, to interactive websites with access to (animated) coaches and peer support. Besides evaluating the effectiveness of an intervention on objectively assessed PA, all interventions also included continuous self-monitoring of PA as part of the intervention. Procedures for the collection and analysis of PA data varied across studies; five studies used pedometers to objectively assess PA and seven used tri-axial accelerometers. Main reported outcomes were daily step counts and minutes spent on PA. The current evidence seems to point to a positive short-term effect of increased PA (i.e. right after administering the intervention), but evidence for long-term effects is lacking. Many studies were underpowered to detect any intervention effects, and therefore larger studies with longer follow-up are needed to provide evidence on sustaining the PA increases that follow eHealth interventions in older people
    corecore