1,067 research outputs found

    Cooling Performance of Arrays of Vibrating Cantilevers

    Get PDF
    provide heat transfer enhancement while consuming little power. Past research has focused on feasibility and performance characterization of a single fan, while arrays of such fans, which have important practical applications, have not been widely studied. This paper investigates the heat transfer achieved using arrays of cantilevers vibrating in their first resonant mode. This is accomplished by determining the local convection coefficients due to the two piezoelectric fans mounted near a constant heat flux surface using infrared thermal imaging. The heat transfer performance is quantified over a wide range of operating conditions, including vibration amplitude (7.5–10 mm), distance from heat source (0.01–2 times the fan amplitude), and pitch between fans (0.5–4 times the amplitude). The convection patterns observed are strongly dependent on the fan pitch, with the behavior resembling a single fan for small fan pitch and two isolated fans at a large pitch. The area-averaged thermal performance of the fan array is superior to that of a single fan, and correlations are developed to describe this enhancement in terms of the governing parameters. The best thermal performance is obtained when the fan pitch is 1.5 times its vibration amplitude

    Experimental Study of Aerodynamic Damping in Arrays of Vibrating Cantilevers

    Get PDF
    Cantilever structures vibrating in a fluid are encountered in numerous engineering applications. The aerodynamic loading from a fluid can have a large effect on both the resonance frequency and damping, and has been the subject of numerous studies. The aerodynamic loading on a single beam is altered when multiple beams are configured in an array. In such situations, neighboring beams interact through the fluid and their dynamic behavior is modified. In this work, aerodynamic interactions between neighboring cantilever beams operating near their first resonance mode and vibrating at amplitudes comparable to their widths are experimentally explored. The degree to which two beams become coupled through the fluid is found to be sensitive to vibration amplitude and proximity of neighboring components in the array. The cantilever beams considered are slender piezoelectric fans (approximately 6 cm in length), and are caused to vibrate in-phase and out-of-phase at frequencies near their fundamental resonance values. Aerodynamic damping is expressed in terms of the quality factor for two different array configurations and estimated for both in-phase and out-of-phase conditions. The two array configurations considered are for neighboring fans placed face-to-face and edge-to-edge. It is found that the damping is greatly influenced by proximity of neighboring fans and phase difference. For the face-to-face configuration, a reduction in damping is observed for in-phase vibration, while it is greatly increased for out-of-phase vibration; the opposite effect is seen for the edge-to-edge configuration. The resonance frequencies also show a dependence on the phase difference, but these changes are small compared to those observed for damping. Correlations are developed based on the experimental data which can be used to predict the aerodynamic damping in arrays of vibrating cantilevers. The distance at which the beams no longer interact is quantified for both array configurations. Understanding the fluid interactions between neighboring vibrating beams is essential for predicting the dynamic behavior of such arrays and designing them for practical applications

    The time course of compensatory puffing with an electronic cigarette: Secondary analysis of real-world puffing data with high and low nicotine concentration under fixed and adjustable power settings

    Get PDF
    Introduction: In a secondary analysis of our published data demonstrating compensatory vaping behavior (increased puff number, puff duration, and device power) with e-cigarettes refilled with low versus high nicotine concentration e-liquid, here we examine 5-day time course over which compensatory behavior occurs under fixed and adjustable power settings. Aims and Methods: Nineteen experienced vapers (37.90 ± 10.66 years, eight females) vaped ad libitum for 5 consecutive days under four counterbalanced conditions (ie, 20 days in total): (1) low nicotine (6 mg/mL)/fixed power (4.0 V/10 W); (2) low nicotine/adjustable power; (3) high nicotine (18 mg/mL)/fixed power; (4) high nicotine/adjustable power (at 1.6 Ohm). Puff number, puff duration, and power settings were recorded by the device. For each day, total daily puffing time was calculated by multiplying daily puff number by mean daily puff duration. Results: A significant day × setting interaction revealed that whilst puffing compensation (daily puffing time) continued to increase over 5 days under fixed power, it remained stable when power settings were adjustable. Separate analysis for puff number and puff duration suggested that the puffing compensatory behavior was largely maintained via longer puff duration. Conclusions: Under fixed power conditions (4.0 V/10 W), vapers appear to compensate for poor nicotine delivery by taking longer puffs and this compensatory puffing appears to be maintained over time. Implications: Studies in smokers suggest that when switching to lower nicotine levels, compensation for poorer nicotine delivery is transient. Our novel findings suggest that vapers show a different pattern of compensation which is influenced by both nicotine strength and device power settings. When power is fixed (4.0 V; 10 W), compensation (via more intensive puffing) appears prolonged, persisting up to 5 days. Under adjustable settings when power is increased, puffing patterns remain stable over time. Implications of such compensatory behaviors for product safety and user satisfaction need further exploration

    Differential regulation of TNF-α and IL-1β production from endotoxin stimulated human monocytes by phosphodiesterase inhibitors

    Get PDF
    The effect of selective PDE-I (vinpocetine), PDE-III (milrinone, CI-930), PDE-IV (rolipram, nitroquazone), and PDE-V (zaprinast) isozyme inhibitors on TNF-α and IL-1β production from LPS stimulated human monocytes was investigated. The PDE-IV inhibitors caused a concentration dependent inhibition of TNF-α production, but only partially inhibited IL-1β at high concentrations. High concentrations of the PDE-III inhibitors weakly inhibited TNF-α, but had no effect on IL-1β production. PDE-V inhibition was associated with an augmentation of cytokine secretion. Studies with combinations of PDE isozyme inhibitors indicated that PDE-III and PDE-V inhibitors modulate rolipram's suppression of TNF production in an additive manner. These data confirm that TNF-α and IL-1β production from LPS stimulated human monocytes are differentially regulated, and suggest that PDE-IV inhibitors have the potential to suppress TNF levels in man

    The unintegrated gluon distribution from the CCFM equation

    Get PDF
    The gluon distribution f(x, k_t^2,mu^2), unintegrated over the transverse momentum k_t of the gluon, satisfies the angular-ordered CCFM equation which interlocks the dependence on the scale k_t with the scale \mu of the probe. We show how, to leading logarithmic accuracy, the equation can be simplified to a single scale problem. In particular we demonstrate how to determine the two-scale unintegrated distribution f(x,k_t^2,mu^2) from knowledge of the integrated gluon obtained from a unified scheme embodying both BFKL and DGLAP evolution.Comment: 16 pages LaTeX, 3 eps figure

    Daily exposure to formaldehyde and acetaldehyde and potential health risk associated with use of high and low nicotine e-liquid concentrations

    Get PDF
    Recent evidence suggests that e-cigarette users tend to change their puffing behaviors when using e-liquids with reduced nicotine concentrations by taking longer and more frequent puffs. Using puffing regimens modelled on puffing topography data from 19 experienced e-cigarette users who switched between 18 and 6 mg/mL e-liquids with and without power adjustments, differences in daily exposure to carbonyl compounds and estimated changes in cancer risk were assessed by production of aerosols generated using a smoking machine and analyzed using gas and liquid chromatography. Significant differences across conditions were found for formaldehyde and acetaldehyde (p<0.01). Switching from a higher to a lower nicotine concentration was associated with greater exposure regardless of whether power settings were fixed or adjustable which is likely due to increased liquid consumption under lower nicotine concentration settings. Daily exposure for formaldehyde and acetaldehyde was higher for 17/19 participants when using low (6mg/mL) compared with high (18mg/mL) nicotine e-liquid concentration when power was fixed. When power adjustments were permitted, formaldehyde and acetaldehyde levels were higher respectively for 16/19 and 14/19 participants with the use of 6 compared with 18 mg/mL nicotine e-liquid
    • …
    corecore